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SUMMARY

Both mortality rate and radial growth of high
elevation (>900 m) red spruce-Fraser fir forests
of the southern Appalachians have experienced
change since approximately 1960. Scientific
interest in a study of these forests have
increased because atmospheric pollution ís a
possible cause of the change. Scientists with
statistical and biological expertise
independently analyzed a tree ring data set
collected  by the Tennessee Valley  Authority and
the National Park Service. The objective  of the
analysis was to develop new or improved
techniques for extracting information from such
data; tree rings represent a natural data storage
system that is one of the few sources of long-
term information for these forests.
Although no definite statements are made about

the role of atmospheric deposition in observed
forest decline, the results should contribute to
the success of future research. The four
techniques employed ín the study involved: (1) a
dendrochronological approach employing spline
detrending and multiple regression to study the
effects of climate  on ring width, (2) an
application of fractals to study the dependence
of variance  on mean ring width over time, (3) an
approach that combined  Box-Jenkins methods and
spatial analysis, and (4) a method of studying
time dependence of ring width on climate using
the Kalman filter.
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The Institute for Quantitative Studies at the
USDA Forest Service, Southern Forest Experiment
Station, has been in a
statistical

engaged study of
methods used  in researching

Atmospheric Deposition Influentes  on Forests
(ADIF). The study was funded by the National
Vegetation Survey, which is under the Natio-l
Acid Precipitation Assessment Program (NAPAP).
The study began with a distributed seminar; for
10 weeks articles about ADIF were sent to a
number of participants  who returned comments each
week. A final report was produced  (Kiester and
others 1985) consisting of critiques of past ADIF
studies, suggestions for additional reading, and
philosophy about the type and quality of research
needed ín the ADIF area.

The study indicated that tree ring analyses
held promise for the study of ADIF, but further
development of appropriate statistical methods
would be useful. Therefore the idea of
"replicated-statisticians" was employed. Because
there are severa1 ways to approach a tree ring
analysis, it was probable that allowing a number
of individuals to work independently would yield
some interesting new dendrochronological
techniques. Red spruce (Pitea rub&s  Sarg.) was
chosen  for this study because‘ claims were
previously made that spruce forests were
experiencing unexplained growth declines in both
the Northeast and the South (Hornbeck and Smith
1985;  Adams and others 1985). Although the stüdy
was intended to develop statistical methods and
not explanations of growth declines, using this
data allowed for that possibility

This study was a joint endeavor by the USDA
Forest Service, the National Park Service (NPS),
and the Tennessee Valley Authority (TVA).
Funding came from the Forest Service and the  TVA,
data from the TVA and NPS, and statistical
analyses were conducted by the Forest Service.
Agreements were made with the following
scientists to perform analyses and provide
individual reports:

(1) Edward R. Cook, Ph.D.
.Tree-Ring  Laboratory
Lamont-Doherty Geological Observatory

' of Columbia University
Palisades, New York 10964

(2) Keith Ord, Ph.D. and Janice Derr, Ph.D.
Department of Management Science
Pennsylvania State University
University Park, PA 16802

(3) Robin A. J. Taylor, Ph.D.
Department of Entomology
lC6  Patterson Building
Pennsylvania State University
University Park,  PA 16802

(4) Paul C. Van Deusen, Ph.D.
Inatitute for Quantitative Studies
Southern  Forest Experiment Station
701 Loyola Avenue
New Orleans, LA 70113

Dr. Cook is considered  to be one of the leaders
ín the field of dendrochronology, and his
analysis therefore includes the most currently
accepted techniques. He concluded that there is

evidente of anomalous behavior in the red spruce
forests of the Great Smoky Mountains and suggests
that this is partly due to warmer summer
temperatures in recent years. He also states
that the situation in southern red spruce ís not
similiar to that in northern red spruce.
Drs. Ord and Derr performed a spatial analysis

on the data. They concluded that there was a
tendency for ring widths to diminish ín recent
years and that there is a strong spatial
dependence in forecast residuals that cannot be
explained by geographic or biotic factors alone;
They did not consider climate, which they mentían
could explain some of the remaining spatial
dependence. The analysis performed here is novel
for the field of dendrochronology and may lead to
useful r,esults  in the future.

To study the dependence of variance  on the mean
of the data, Dr. Taylor investigated the use of
"fractals," a term coined to denote fractional
dependence. He concluded that the change ín
fractional dimension over time may be due to
successional, climatic, or anthropogenic
influentes. This technique has not been applied
previously to tree ring data and may show promise
after further development.

Dr. Van Deusen  analyzed the data using the
Kalman filter technique, which is commonly used
in engineering applications. At the time of this
study, the method had not been used in
dendrochronology, although scientists in the
Netherlands (Visser 1986) have recently published
a paper on independent applications of the method
to tree rings. The Kalman Filter allowed the
climatic  data to be modeled dynamically so that
ita effect over time could be studied. He
concluded that these trees have become
progressively more sensitive to climate since the
late 1950's. This increased sensitivity may
coincide with insect-caused thinning in the
stands.
Al1 the studies concluded that the growth

patterns in these stands have changed  in the last
20 years. The causes of these changes are
uncertain, but the sensitivity of the stand to
climate appears to be increasing. To enhance the
reader's ability to interpret the various
analyses, the individual reports are prefaced by
a review by Elizabeth Groton and Christopher
Eagar  o f the geographical and biological
background of the Southern Appalachian Spruce Fir
Forest.

Referentes  cited ín this section are: Adams,
H.S.; Stephenson, S.L.; Blasing, T.J.; Duvick,
D.N. 1985. Growth-trend declines of spruce and
fir ín mid-Appalachian subalpine forest.
Environmental and Experimental Botany.  25(4):
315-325. Hornbeck, J.W.; Smith, R.B. 1985.
Documentation of red spruce growth decline.
Canadian Journal of Forest Research. 15: 1199-
1201. Kiester, A.R.; Van Deusen, P.C.; Dell,
T.R. 1985. Status of the concepts and
methodlogies used in the study of the effects of
atmospheric deposition on forests,.  Interna1
report for the National Vegetation Survey of
NAPAP. Visqer  , H. 1986. Analysis, of tree ring
data using the Kalman Filter techniques. IAWA
Bulletin n.s., Vol. 7(4)  289-297. Published at
the Rijksherbarium, Netherlands.
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Southern Appalachian Red Spruce--Fraser  Fir Forésts

Elizabeth Groton and Christopher Eagar

GEOGRAPHICAL  AND BIOLOGICAL
BACKGROUND

The southem Appalachian red spruce-Fraser fir*
forests ara found in southwestern Virginia,
western North Carolina, and eastem Tennessee
(fig. 1). Total area of these southern
Appalachian spruce-fir forests ís estimated at
26,577 hectares, with 19,755 hectares  occurring
within the Great Smoky Mountains National Park
(GSMNP); Extensive logging and other
disturbances early in the 20th century have
reduced the extent of the southem Appalachian
spruce-fir forests. Today  this forest type
occurs on high-elevation peaks (above 1,370 m) in
islandlike patches.
Species' composition in the s-outhern

Appalachian forests changes  with the elevational
gradient. At lower elevations (1,370-1,580  m) in
undisturbed forests such as those of the Great
Smoky Mountains, red spruce (Pitea rubens Sarg.)
is found in combination with northern hardwood
type species: maple (ti spp.), Ameritan  beech
(Faeus prandifolia Ehrh.), yellow birch (Betula
allezhaniensis Britton), eastern hemlock (m
candensis (L.) Carr., northern red oak (Ouercus
L . ) ,rubra Carolina silverbell (Halesia carolina
L.), and yellow buckeye (Aesculus octandra
Marsh.). As elevation increases, the fir
component  gains importance, and forest
composition changes  to predominantly red spruce-
Fraser fir. Red spruce  occurs less frequently at
the highest end of the gradient (above 1,890 m),
giving way to essentially pure Fraser fir (Abies
fraseri (Pursh) Poir.)  stands on mountain tops
(Whittaker 1956). Mountains that were logged
during.the early payt of this century and did  not
experience postlogging slash fires are dominated
by Fraser fir. Thís includes most of the Black
Mountains, Balsam Mountains, Roan Mountain, and
Mount Rogers.

Red spruce grows larger and lives longer than
Fraser fir, but Fraser fir grows more rapidly and
produces more prolific seed crops than red
spruce. Red spruce can live for over 350 years,
grow to 40 meters in height, and have diameters
at breast height (d.b.h.)  in excess of 1 meter.
Fraser fir seldom lives longer than 150 years and
attains a maximum height of 25 meters and d.b.h.
of 50 centimeters. Oosting and Billings (1951)
found five times more Fraser fir than red spruce
seedlings in old-growth stands in the Creat Smoky
Mountains. Both species are extremely shade
tolerant and are capable of resuming normal
growth after 50 years of suppression.

+Redpruce-Fraser  fir forests will generally
be referred to as simply spruce-fir forests.

THJIBAUAHUOOLYADEUXD

Most spruce-fir forests of the southern
Appalachians have been recently dísturbed by the
extensive mortality of Fraser fir caused  by an
introduced insect, the balsam woolly adelgid
(Adelaes piceae).This pest, a native of Europe,
is a tiny insect that feeds on the bark of true
firs (Abies  spp.). Fraser fir is quickly killed
by the balsam woolly adelgid. Mortality occurs
between 3 and 9 years from the time of initial
infestation, depending on the size and vigor of
the tree (Amman and Speers 1965). Tree death ís
caused  by the diffusion of compounds secreted  by
the adelgid into the xylem during feeding, which
causes formation of premature heartwood.
Translocation of water and minerals to the crown
are greatly reduced, causing water stress and
eventual death of the tree (Puritch 1971, 1973,
1977, Puritch and Johnson 1971, Puritch and Petty
1971).

The balsam woolly adelgid was first identified
in North America  in 1908 on balsam fir (u
balsamea) in Maine (Kotinsky 1916). The adelgid
has caused  extensive mortality to balsam fir
throughout eastern Canada;  however, infestations
have not progressed more than 80 kilometers
inland from the coast because of extreme inland
winter conditions (Balch 1952, Schooley and
Bryant 1978). The balsam woolly adelgid is not
present in the northern Appalachian spruce-fir
forest.

The balsam woolly adelgid was detected  in the
southern Appalachians on Mount Mitchell, North
Carolina, in 1957 (Speers 1958). Subsequent
surveys revealed that the adelgid had spread
throughout the entire 3,035 hectares of Fraser
fir type in the Black Mountains (Nagel 1959).
High mortality of Fraser fir and widespread
adelgid distribution indicated establishment
prior to 1957, perhaps as early as 1940. Balsam
woolly adelgids were detected  ín 1962 on Roan
Mountain (Ciesla and Buchanan 1962),  and in 1963
infestations were located on Grandfather Mountain
and on Mount Sterling in the GSMNP.

The adelgid arrived in the Clingman's Dome area
of the GSMNP in the early 197O's,  and tree
mortality began there in the late 1970's.
Surveys found the adelgid ín the Balsam Mountains
and the nearby Plott Balsams of North Carolina in
1968 (Rauschenberger and Lambert 1970). The
balsam woolly adelgid was not found on Mount
Rogers, Virginia, until 1979; however, subsequent
stem analysis of severa1 trees within the
infested areas revealed adelgid-caused red wood
beginning in 1962 (Lambert and others 1980) in
the annual rings.

By 1984 and 1985, the balsam woolly adelgid had
caused extensive damage throughout the Black
Mountains. Balsam Mountains, Plott Balsams,

Elizabeth Groton is forest biometrician for the Tennessee Valley  Authority,
Norris, TN. Christopher Eagar  is ecologist  for the National Park Service,
Gatlinburg, TN.
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The Red Spruce -Fraser Fir Forest I
1 Great Smoky Mtns.
2 Plott Balsam Mtns.
3 Balsam Mtns.
4 Black Mtns.
5 Roan Mtn. + Unaka  Mtn.
6 Grandfather Mtn.
7 Long Hope Mtn.
8 Mt. Rogers + Whitetop Mtn.

Figure 1. --Area  covered by the southern Appalachian red spruce--Fraser  fir forests.
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Grandfather Mountain, and most of the Great Smoky
Mountains. Limited use of insecticides  at Roan
Mountain reduced  fir mortality in accessible
areas, although nontreated areas experienced
heavy damage. In the Clingman's Dome area of the
GSMNP, adelgid infestations had caused
significant  fir mortality at elevations below
1,830 meters and minimal  damage above this
elevation. Mount Rogers had suffered the least
Fraser fir mortality of the southern Appalachian
spruce-fir forests. There were isolated, dead
Fraser fir in areas known to have been infested
for 23 years, but even within these areas the
impact of the adelgid was surprisingly low.
Possible explanations for this anomalous
condition on Mount Rogers include: a genetic
based difference in defense mechanism to adelgid
infestation of this fir population, a reduction
in the toxicity of the secretions of the Mount
Rogers adelgid population, or a combination of
both possibilities.

RESEARCH  AND STUDY END~VORS

National  Park Service and
Tennessee Valley  Authority

Increased mortality (Siccama and others 1982,
Scott and others 1984, Vogelmann and others 1985)
and apparent reductions ín radial increment
(Adams and others 1985, Bruck 1986, McLaughlin
and others 1983) in the high-elevation spruce-fir
forests of the Eastern United States prompted two
studies in the southern Appalachians. The
studies were designed to assess the current
condition of these forests, relate observed
decline symptoms to site characteristics, and
provide  baseline data to monitor future changes
in the forest condition.

The first study, conducted by the National Park
Service (NPS), began in the summer of 1984 in the

spruce-fir forests of the GSMNP. The sécond
study, conducted by the Tennessee Valley
Authority (TVA) in the autumn of 1984,
established plots throughout the range of the
southern Appalachian spruce-fir type, excluding
the GSMNP. Intending to combine data sets  for
future analyses, both agencies collaborated on
sampling design in order to ensure that similar
data were collected.
Problems of assessing change in forest

productivity prompted the TVA and NPS to
establish permanent vegetation plots in the
southern range of the spruce-fir type. Plot
establishment was also influenced by the need for
additional information on stand dynamics ín the
spruce-fir forests. This led to a collaborative
study between the TVA, NPS, and the Forest
Service. Data collected  by the TVA and NPS
included tree increment  core data and detailed
plot ínformation. The tree core data and plot
data were summarized and made available to a
number of individual researchers for independent
analysis. Plot information included elevation,
latitude and longitude, live and dead basal area,
and stand density. Regional climatic data
(monthly averages of precipitatíon and
temperature since 1933) were also included in the
data.

Sampling procedures  utilized by the NPS and TVA
were basically the same (table 1). Both agencies
used stratified random sampling, locating plots
on aerial photographs and topographic maps. Data
that were collected  from the plots included site
characteristic data such as slope, aspect,
topographic location, and descriptions of
understory vegetation. Individual trees were
mapped, measured, and evaluated for decline
symptomology. Quantitative assessments were
made of mortality and regeneration. Increment
cores were collected  from five dominant or
codominant trees at each site. Two cores per
tree were taken at d.b.h.

Table l.-Comparison of Tennessee Valley  Authority (TVA) and National
Park Service (NPS) spruce-fir sampling procedures

Variable TVA NPS

Plot Locatíon

Elevation

Plot Size

Overstory stand
data+

Site  charater-
istic data+

Increment  cores

Stratified random
(Strata:  Elevation
and dry/wet)

Variable within Held constant at
strata a set strata

Circular, 0.08 ha Square, 0.04 ha

Stratified random
(Strata:  Elevation,
topo position,
macro-aspect)

Cores taken from five
dominant or codominant
trees from outside the
plot and extended to
tree center.

Cores taken from five
dominant trees from
within plot, cores
not extended to tree
center.
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The results of the analyses of tree core data
may provide  insight into the question of whether
or not the southern Appalachian red spruce and
Fraser fir are experiencing a decline that cannot
be attributed to natural stresses. The plots
established by the NPS and TVA will eontinue to
be remeasured in order to monitor future changes
in stand productivity.

Other Studies

Severa1 studies have used annual radial
increments  from tree cores to evaluate  changes in
the growth rate of red spruce and Fraser fir from
severa1 sites in the southern Appalachians.
These studies indicated an abrupt shift to narrow
growth rings beginning in the late 1960's to
early 1970's (Adams and others 1985, Bruclc 1986,
McLaughlin and others 1983) for red spruce and,
to a lesser extent, for Fraser fir. This
tendency was more drastic at high elevations
(Adams and others 1985). The annual growth
declines are very  similar in timing to studies
done 'in the Northeast, but they are not as
geographically widespread and are less consistent
within a given sample. Additionally, the
analysis of tree ring data is extremely
complicated because  of the effects of tree age,
stand competition, climate, and physiological
responses to stress that may persist for severa1
years. Therefore the interpretation of these
data has been  the subject of considerable
controversy.

Vast differences exist in species' composition,
structure, and stand productivity within  the
limitad  extent of the southern spruce-fir. These
differences are a result of climatic  disparities
associated with eìevational gradients, past
management histories, and other site-specific
variables. These environmental factors, and the
lack of historical  data in the South, preclude
any analysis designed to discover  either the
causes of observed declines or even if the
observed declines are abnormal  in these forests.
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A Tree Ring  Analysis of Red Spruce in the Southem  Appalachian Mountains

Edward R. Cook

INTRODUCTION

A recent analysis of red spruce (Pitea rubens
Sarg.) tree ring widths in southern Appalachian
stands has caused  concern that the red spruce
forests of the southern Appalachian mountains may
be ín an early stage of decline (Adams and others
1985). Although many hypotheses have been
generated regarding the cause of the red spruce
decline, no definite answer has yet been  found
(McLaughlin  1985). If the decline ín red spruce
ring width can be explained by natural effects,
then costly and needless pollution controls may
be avoided.

The Tennessee Valley  Authority (TVA) and the
National Park Service (NPS) conducted studies on
permanent plots established throughout forests of
the southern Appalachians. Long-tez-m changes in
the composition and health of the forest were
monitored. Using the data provided by the NPS
and TVA, the objective  of my analysis was to
determine if the recent patterns in the ring
widths indicate an anomalous decline and íf this
decline can be explained by natural environmental
factors related to climate. The analyses were
performed on annual tree ring chronologies
(Fritts 1976, Cook 1985) developed from the ring
width series of each plot.

TREE RING DATA QUALITY  GHEGK  AND STANDARDIZATION

The quality of the data provided by the NPS and
TVA was checked using the  COFECHA  program of
Holmes (1983). The program checked for cross-
dating errors, measurement errors,  and other ring
width irregularities that might limit the
usability of ring width time series for tree ring
analysis. Because the actual increment  cores
were not available for this quality check,  the
program output was used to verify cross-dating,
make corrections of dating when possible, and
eliminate ring width series for which no obvious
corrections could be made. Approximately 15
percent of the ring width series were either

corrected or removed from the data set.
Therefore the number of ring width series for
some plots were reduced  to as few as three.
After the quality check,  the remaining ring

width series of each plot were standardized
(Fritts 1976, Cook 1985) to remove long-term
trends in growth associated with tree age,  sise,
and stand dynamics. The need forstandardization
prior to creating a stand-average tree ring
chronology ís discussed in detail in Fritts
(1976) and Cook (1987). Because  the ring width
series were rarely more than 100 years long,
negative exponential or linear regression curves
were used to detrend the series.

However, it was unlikely that this conservative
detrending method would remove av anomalous
decline signa1 during standardization. After the
growth curve was estimated for each series, the
tree ring indices were computed  as:

It - Rt/ Gt

where It equaled the tree ring index, Rt was the
ring width, and Gt equaled the growth curve
value, al1 for year t. Therefore a tree ring
index can be defined as the ratio of the actual
ring width to the expected value as estimated by
Gt. Tree ring indices have a long-term mean of
1.0 and a variance  that ís reasonably time
stable. Thus tree ring indices are stationary
processes that can be averaged into a stand-
average series. After each ring width series was
reduced  to index form, the tree ring index series
of each plot were averaged into a final tree ring
chronology using the biweight robust mean
(Mosteller and Tukey 1977) to reduce the
influente  of outliers on the computation of the
mean-value function.

STRATIPICATION AND SCRERNING  OF PIBTS

The TVA and NPS plots were stratified by
elevation into three groups: below 5,400 feet,
5,400 to 6,000 feet, and above 6,000 feet. These
strata reflected  a vegetational gradient in the

Edward R. Cook is a research scientist
Observatory in Palisades, New York.

at Lamont-Doherty Geological



mountains. The lowest red spruce stratum was
predominantly a mixed conifer-hardwoods forest
zone, while the strata above 5,400 feet were
within the spruce-fir zone (White 1984). The
highest elevational stratum contained the highest
proportion of Fraser fir (Abies fraseri [Pursh]
Poir.) relative to red spruce and was the zone
most heavily impacted by the balsam woolly
adelgid (Eagar 1984).

The elevational strata also reflected  a
climatic  gradient of increasing precipitation and
decreasing temperature with increasing elevation.
Thus the below-5,400-foot  stratum was the warmest-
and driest area and the above-6,000-foot  stratum
the coolest and wettest. Additionally, the
highest stratum was enveloped in clouds most
often and the lowest stratum was enveloped in
clouds least often.
The climatic  response of red spruce in the

southern Appalachian Mountains has not been
studied as thoroughly as it has in the northern
Appalachians (Conkey 1979, McLaughlin  and others
1987, Cook and others 1987). However, based on
ecological principies, ít ís probable that the
role of temperature will increase as a limiting
factor in red spruce growth at the elevational
extremes of the species' range. Precipitation
will also be more important as a limiting factor
at the below-5,400-foot plots. Therefore a
gradient in the response of red spruce to climate
should be found that will correlate well with
some aspect of the known climatic  gradient.
The stratification by elevation produced  11 TVA

and 8 NPS plots in the above-6,000-foot  stratum,
13 TVA and 6 NPS plots in the 5,400- to 6,000-
foot stratum, and 24 TVA and 7 NPS plots in the
below-5,400-foot  stratum. At this stage, some of
the plots were eliminated because  of the
shortness of the tree ring chronologies. Because
1930 was chosen  as an initial criterion for the
inclusion  of tree ring series in the analyses,
any series beginning after 1930 was eliminated.
The year 1930 allowed for the inclusiqn  of the
large majority of plots and simultaneously
provided an adequate time base for the
dendroclimatic analyses. A longer time base
would have been  better, but it also would have
eliminated too many sites. Furthermore, the best
available climatic  data began in 1931.
After the elimination of short series, the

sample depth of the 1930 decade was examined for
each remaining chronology. If the sample depth
was largely based on only one increment  core in
that decade, then that chronology was
eliminated. The reason  for this step in the
preliminary screening was to insure that the 1930
decade would not be unduly affected by poor
replication at some sites.
The final result of the screening was the

selection of 13 plots above 6,000 feet, 15 plots
between 5,400 and 6,000 feet, and 29 plots below
5,400 feet. Eight above-6,000-foot  series were
from NPS plots, four were from TVA Mt. Mitchell,
and one was from TVA Roan Mountain. Thus the
above-6,000-foot  series comprised 68 percent of
the available plots. The geographic coverage of
this stratum was obviously limited by the maximum
elevations of the mountains. The 5,400-  to
6,000-foot  stratum was composed  of six NPS plots
and nine TVA plots; these represented 78 percent
of the available plots. The geographic coverage

was much better. Only Roan Mountain and
Srandfather Mountain were not represented. The
àelow-5,400-foot  stratum was composed  of 7 NPS
and 22 TVA plots, representing 93 percent of the
available plots. The geographic coverage was
complete, with al1 mountains represented.

ADTOREGRESSIVE TIME SERIES MODELING

Tree ring series invariably possess some degree
of serial persistence or autocorrelation that is
principally  due to physiological preconditioning
within the tree. Therefore the information
contained in a given ring width is somewhat
determined by past tree growth and vigor.
Typically, the autocorrelation structure  of tree
ring indices can be adequately modeled as an
autoregressive process  (Cook 1985). The general
autoregressive (AR) process of order p has the
form (Box and Jenkins 1970):

P
=t - et + ): @iZt-i

i-l
where Zt is the observed process for year t, et
equals an unobserved input or random shock that
does not contain any autocorrelation, and @i the
autoregressive coefficients of the AR(p) process.

In the context  of this tree ring analysis, the
Zt were the tree ring indices for a plot. Each
tree ring series was modeled as an AR(2) for the
common  interval 1930-83. The choice of an AR(2)
model was based on previous experience modeling
longer red spruce chronologies as AR processes.
The common  AR persistence structure  among al1
plots within each stratum was also estimated
using a pooling procedure described  in Cook
(1985). Differences between the common  AR model
and those for the individual series were useful
tools for measuring the leve1 of autocorrelated
noise in the individual series, which may have
been  caused  by different stand histories and
disturbance regimes.

For the above-6,000-foot  stratum, the common  or
pooled  AR coefficients and the

H
ercent variance

explained by autoregression (R ) were: @l =
0.461, @2 - 0.284, and R2 - 46.1 percent. For
the 13 individual series, the average statistics
were: @l = 0.566, @2 = 0.138, and R2 = 47.9
percent, Although the R2's were similar, the AR
coefficients were noticeably different, probably
because  of residual trend or trendline lack-of-
fit ín the individual series.
similarity of the R21s

However, the
suggested that the

differences between the tree ring chronologies
were largely random through time. Thus the long-
tena disturbance histories of these plots may
have been similar since 1930.
For the 5,400- to 6,000-foot  stratum, the

pooled  statistics were:
and R2 = 18.1 percent.

@1 = 0.324, @2 = 0.177,
For the 15 individual

series, the average statistics are: @l = 0.484,
@2 = 0.168, and R2 = 39.1

and R2
percent. The pooled

AR(l) coefficient were considerably
smaller than the average values for the
individual series. The latter indicated a high
leve1 of autocorrelated noise or out-of-phase
behaviàr between series. Therefore the
disturbance histories of these plots were
probably more variable than those in the higher
stratum.

For the below-5,400-foot stratum, the pooled
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statistics were:  @l - 0.422, Q2 - 0.124, and R2
= 24.4 percent.
the average

For the 29 individual series,
statistics were:

0.094, and R2 - 39.3 percent.
q = 0.530, @2 -
These statistics

were close to those from the intermediate
elevation plots and indicated a similar degree of
nonhomogeneity from plot to plot.
The lower levels of plot homogeneity ín the

strata below 6,000 feet suggested that these
plots have more varied disturbance histories. An
examination of the individual time series from
these plots confirmed  this inference. Some of
the plots showed ralease patterns early in this
century that were consistent with
activity.

logging
Given the much reduced spatial

coverage of the above-6,000-foot  plots, the
higher leve1 of homogeneity among these plots was
probably related to the lack of interferente  by
man.

PRINCIPAL CCMPONENTS  ANALYSIS (PCA)

Because each chronology was based on a small
semple of trees, the dendroclimatic modeling of
c :h plot chronology was not considered  a viable
approach. The results would have been somewhat
chaotic because  of the very high leve1 of noise
in each chronology. Therefore the common
variance  among al1 series within each stratum was
pooled  using principal components  analysis (PCA)
(Cooley and Lohnes 1971). In PCA, the structure
in the correlation matrix of variables ís
transformed into a new set of uncorrelated or
orthogonal modes of behavior called
eigenvectors. Each eigenvector accounts for a
unique proportion of the total variance  in the
original data. The first eigenvector associated
with the largest eigenvalue accounts for the
greatest percentage of common  variance  among al1
variables in the Correlation matrix.

Each eigenvector ís composed  of a number of
loadings or coefficients equal to the number of
original variables in the correlation matrix.
nese loadings, which may be positive or
negative, reflect the relationships between
variables for a specific eigenvector. Frequently
the loadings of the first eigenvector are al1
positive or negative, which indicates that the
variables being analyzed al1  behave similarly.
Therefore, in this study, the tree ring series at
each elevational stratum could exhibit a common
signa1 due to climate, disturbance, or pollution.

The loadings of the first eigenvector can also
be used to create a time series of scores that
revea1 how this most common  component  among al1
series ,behaves through time. This series of
scores is similar to a weighted mean, because
each series is weighted by its eigenvector
loading and then summed with the other weighted
series for each year. The weighting scheme is
optima1 ín the sense that no other component  can
account for more of the common  variance  between
series than the first eigenvector. Consequently,
the scores for each elevational stratum should
have a strong common  signa1 for dendroclimatic
analysis.

The  PCA analyses were done twice for each
stratum: once on the original tree ring indices
and again on the indices after removing AR(2)
persistence from each series. Indices are
referred to as prewhitened after removal of AR(2)
persistence. For the above-ó,OOO-foot  stratum of

13 plots, the first eigenvector of the original
tree ring indices accounted for 50.7 percent of
the total variance, while that of the prewhitened
indices accounted for 53.6 percent of 'the
variance. Common variance increased after
prewhitening because of a reduction of noise
variance  resultant from autoregressive modeling.
In figure 1, the loadings for this eigenvector
are al1 positive, indicating an existing common
signa1 among al1 series. The loadings for the
prewhitened indices were more uniformly positive
than those of the original indices. ThiS
uniformity indicated that some of the differences
between the original indices were amplified by
the autoregression within those series.
For the 5,400- to 6,000-foot  stratum of 15

plots, the first eigenvector of the original tree
ring indices accounted for 34.1 percent of the
variance, while the prewhitened indices accounted
for 45.9 percent. The larger increase in common
variance  after prewhitening indicated that these
chronologies were less homogeneous than those in
the higher stratum. Greater variability in site
characteristics and stand histories in this
intermediate stratum w have caused the
difference. Comparing the single series and
pooled  autoregression models also indicated the
lack of homogeneity between the ,chronologies.
However, the more restricted geographic coverage
of the high stratum may be a biasing agent ín
this comparison. As before, the eigenvector
loadings (fig. 1) were also more uniform after
prewhitening.

For the below-5,400-foot stratum of 29 plots,
the first eigenvector of the original tree ring
indices accounted for 32.6 percent of the
variance, while that of the prewhitened indices
accounted for 40.7 percent. The magnitude of the
difference was similar to that of the
intermediate stratum. Therefore the leve1 of
homogeneity between plots was similar, an
inference also supported by the earlier
autoregressive modeling results. The eigenvector
loadings (fig. 1) of the prewhitened indices were
also more uniform than the loadings of the
original indices.
Generally the strength of the common signa1

within each stratum was directly correlated with
the elevational gradient. The tree ring patterns
of high plots were more similar smong themselves
?han those of the lower plots. Although it may
appear that this result reflected  more limiting
growth conditions towards the upper elevational
limit, the bias in the geographic coverage of
that stratum limits the strength of this
interpretation.
The eigenvector amplitudes or scores of each

stratum  are shown ín figure 2. The solid line
plots were derived from the orignal tree ring
indices, and the dashed line plots were derived
from the AR(2) prewhitened indices.

The scores derived from the original indices
indicate an overa11 pattern of below-average
growth at al1 plots since about 1966. The
largest departure was for the above-6,000-foot
plots. The average score since 1966 wás -2.65
with a standard error of +-0.495. For the 5,400-
to 6,000-foot  stratum, the average score was-
1.54 110.522. And, for the below-5,400-foot
stratum, the average score was -1.73 f0.638.
These long-term departures appeared to exceed the
95-percent significance leve1 using a simple t-
test. However, the use of a t-test on
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Figure l.- -The  eigenvector loadings of the first principal component  of each
red spruce  elevation stratum. The solid line plots correspond to
the loadings of the original tree ring index chronologies. The
dashed line plots correspond to the loadings of the same series
after second-order autoregression‘has been removed from each one.
The eigenvectors were extracted  from the correlation matrix. The
percent. variance  accounted for by each eigenvector, original
(prewhitened), is indicated.
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autocorrelated time series such as these can be
extremely misleading. The nwnber  of independent
observations and the degrees-of-freedom may be
much less than the number indicated by the
available observations.
One way of avoiding the negative effect of

autocorrelation on the degrees-of-freedom is to
use the scores of the AR(2) prewhitened indices.
By definition, these scores do not have any
significant autocorrelation related to that leve1
of autoregression. In figure 2, the prewhitened
scores indicate a smaller reduction in growth
since 1966 in al1 series. The post-1965 means
confirmed  this. For the above-6,000-foot,  5,400-
to 6,000-foot, and below-5,400-foot strata,  the
1966 to 1983 means were -1.09 kO.779, -0.42
f0.807, and -0.71 f0.992, respectively. None of
these means passed a t-test at the 95-percent
significance level. Therefore there may have not
been  any reduction in growth since 1966. The
decline in the original tree ring indices may be
largely explained by the endogenous
autoregressive  persistence of the tree ring data
and the way in which it amplifies the behavior of
the random shocks, et, which are largely
exogenous to the plots.
The above conclusion  was conservative  because

the AR coefficients' used for prewhitening were
based on information in both the pre-1966 and
post-1966 time periods. The method employed
minimized the probability of a type 1 error
because  it assumed that the AR coefficients had
not changed  through time despite an intervention
in the et that may have occurred in 1966. Since
an intervention  in the et could have a strong
impact on the estimation of the AR coefficients,
the prewhitening may have removed part of the
response to an intervention had it occurred. In
order to reduce the probability of a type II
error in these analyses, an alternate method of
intervention analysis (Box and Tiao 1975) testing
for the occurrence of an intervention in
autocorrelated time series was used.

INTERVENTION  ANALYSIS

Intervention analysis specifically allows for
autocorrelation when testing for the occurence of
an intervention in time series. A simple form of
intervention analysis was used in this study to
test for the occurrence of a decline in the
scores since 1966. The form of the intervention
chosen  was a step-function, which is expressed as
10 0 0 . . .] from 1930 to 1965 and [l 1 1 . ..]
from 1966 to 1983. This step-function served as
one of the predictor variables in the analysis.
To account for autocorrelation in each time
series, the scores for years t-l and t-2 were
also used as predictors. The model used allowed
for both the occurrence of a step reduction in
growth and AR(2) persistence. The intervention
model was set up as a multiple regression
analysis problem. In each case, only the step-
function and the lag-1 variable proved  to be
statistically significant at the 90-percent  leve1
or higher.

In contrast, the lag-2 variable never exceeded
the 60-percent significance level. For this
reason,  lag-2 was not used in the final models.
Although one might infer that the previous AR(2)
models were reasonable only because  an

intervention around 1966 changed  the system, the
timing of the intervention was hypothesized only
after an examination of the data. Thus any
inferences concerning a change in persistence
structure  because  of an intervention must take
into account the a posteriori, nature of these
analyses. This issue will be addressed later, as
it affects significance tests.

The results of the intervention analysis were
as follows:

Stratum AR(l) ster> RL

Above 6,000 ft 0.260** -0.566***  58.9%
5,400-6,000  ft 0.234" ;0.369** 27.6%
Below 5.400 ft 0.360*** -0.275** 28.8%

*p CO.10, **p <0.05, *** p <O.Ol

The strength of the step intervention was
directly correlated with elevation. The above-
6,000-foot  scores showed the strongest indication
of an intervention in 1966, which resulted in a
steplike reduction in growth. This result was
consistent  with the original examination of the
1966 to 1983 means for these scores. However,
the step-elevation relationship was new. The
high leve1 of persistence in the above-6,000-foot
scores was greatly reduced  by the step. In
contrast, the persistence in the lower strata was
reduced  less. The reduction in persistence from
the earlier AR(2) modeling appears to be
proportional to the strength of the step.
The probability levels of the intervention

analysis were based on an a priori significance
test ín each case. Acceptance of these results
would effectively minimize type II error at the
expense of type 1 error, in contrast  to the
earlier prewhitening results that minimized type
1 error. Therefore these sets of results served
as useful  limits. As noted earlier, there was a
problem ín applying a priori significance tests
to a statistical analysis problem that was
principally based on an a posteriori examination
of the data. Furthermore, the a posteriori
examination of the scores for an intervention
allowed for 50 possible intervention dates for a
step-function.

Based on probability theory, the probability of
finding a statistically significant step-
function under such conditions is related to the
a priori significance leve1 as:

P = l - (1 - p>m

where P is the a posteriori probability level,  p
is the a priori probability leve1 of the test
being applied, and m is the number of times the
test could be applied to the data. If this
correction is applied to the probability levels
for the step interventions shown above,  only the
above-6000-foot step intervention remains
statistically significant (RO.01). The other
steps do not even pass the P<O.50 level. This
correction is probably overly severe since the a
priori information about the probable timing of
red spruce decline ín the northern Appalachians
(Johnson and Siccama  1983).
Al1 available evidente indicated that the

decline in the northern Appalachians started in
the late 1950's to early 1960's. There is no
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evidente to suggest that any decline in the information can be found to reduce the time
southern Appalachians began before  the northern window of the hypothesized intervention, the null
decline. Thus no intervention should be found hypothesis of no intervention for the lower
prior to 1960. If this information is used to strata cannot be rejected on statistical grounds,
limit the intervention time window to 1960-81, Figure 3 shows each series of scores with its
the results of the lower two strata still remain fitted intervention model. As the statistics
well outside the P<O.lO leve1 of significance, indícate, the above-6,000-foot  model revealed a
which is still unacceptable. For an a posteriori much more pronounced step change than the other
probability leve1 of P-O.10 to be achieved, an a models.
priori probability of p=O.Ol and an intervention Al1 strata showed signs of decreasing growth
time window of 10 years are needed. Unless after 1966. However , growth reduction in the
additional constraints based on a priori lower strata diminished with decreasing
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Figure 3.--The  actual (solid)  and estimated (dash) tree ring scores based on
fitting a step intervention model to each series. The date of
the intervention is 1966.
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elevation. The cause of the growth reduction is
still undetermined. Climate or other changes in
natural influentes  are as probable a cause as are
anthropogenic pollutants.

The reality of the elevational gradient in step
size may be questioned. However, the existence
of known environmental-climatic gradients in the
mountains suggests that the step-sise gradient is
a reality. The step-size gradient may be due to
a temperature-related phenomenon. This
hypothesis is consistent  with what ís now known
about the relationship between temperature stress
and red spruce declines in the northern
Appalachian Mountains (Cook and others 1987).

DJ3NDROCLIMATOLOGY OF RED SPRUCE
BY RLRVATIONAL  STRATUH

As noted earlier, the three strata used in this
study follow both vegetational and climatic
gradients, which are directly correlated with
elevation. To illustrate the reflection  of this
gradient in the tree rings, figure 4 shows the
three series of original tree ring index scores
superimposed on each other. Various time periods
in figure 4 (1932-34, 1935-57, 1959-63) indicate
striking gradients across scores correlated with
elevation. The presente  of these gradients
across scores suggests that an elevational
gradient in the climatic  response of red spruce
operates at times.

At other times ín the scores (1940-42, 1958,
1969), the gradient breaks down, and the scores
of al1 strata are similiar. This similarity
suggests that the relationship between climatic
response and elevation ís nonstationary through

time. The degree to which the gradient exists
probably depends on which climatic variables are
limiting to red spruce growth in a given year and
how those climatic  variables are influenced by
elevation. For example, based on the physics of
precipitation formation and its interaction with
orography, the influente  of drolgght  on red spruce
growth should diminish with increasing elevation.
However, once the available moisture supply is no
longer limiting to growth, this drought response
gradient would probably disappear from the tree
rings.
In this study, dendroclimatic modeling ís

limited by the lengths of the series being
modeled and the unavailability of long climatic
time series. Ideally, the modeling should
proceed  as described  by Cook 1987; the
dendroclimatic signa1 should be modeled for a
long preintervention time period of perhaps 50 to
60 years. A model should then be used to
forecast or predict  tree rings through a period
to the present that includes both another
preintervention time block and the post-
intervention period. The time stability of the
dendroclimatic model must be tested; therefore
another preintervention time period is needed.
If the model is verified as time stable, then it
can be used to test for an intervention that
changes the tree ring response to the model.
This method has been  successively used in
analyzing the red spruce decline ín the
Appalachian Mountains (McLaughlin  and others
1987, Cook and others 1987).

Because  of the insufficient tree ring time
base, a weaker method of modeling was implemented
that provided a basis for inference regarding the
climatic  response gradient hypothesized earlier.

~~AMPLITUDES  0F mw (SOLID),MEDIUM  (DASH),MD  HIGH (DOT)EW. PMTS
8

Figure 4.--The  amplitudes of the original tree ring indices superimposed on
each other. The purpose of this plot is to highlight certain
time periods when elevation-related gradients in climate response
are likely to be occurring.
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This method was based on simple correlations
between the tree ring scores and monthly climatic
data for the period 1931-83.

Prior to the correlation analyses, the tree
ring scores for each elevational stratum were
prewhitened to remove autocorrelation. In each
case, significant AR(l) or AR(2) persistence was
removed. The monthly temperature and
precipitation data, averaged over the northern
and southern mountain climatic  divisions of North
Carolina and the southwestern mountain division
of Virginia, were similarly modeled for
autocorrelation. In this case, the climatic  data
showed very weak or nonexistent autocorrelation
out to lag 3. Therefore, the climatic  data were
not prewhitened.

The dendroclimatic modeling was then treated as
a multíple input-single output transfer function
(Box and Jenkins 1970) ín which ring width was a
function of climate. Given the lack of
autocorrelation in either the input or output
series, the principal aim of the transfer
function modél was to identify those climatic
variables that correlated significantly with tree
rings and identify any delay or lag-response
between the inputs and the output. The analysis
assumed that the climatic variables were
orthognal, an assumption that was violated for
almost al1 variables. This violation may have
increased the number of significant climatic
variables in the model. However, since the aim
of these analyses is strictly correlative  and not
predictive, this should not have any serious
impact on the results.

The tree ring scores were lagged up to 3 years
ín the transfer function analyses, meaning that
each monthly climatic  variable was correlated
with each series of scores for years t, t+l, t+2,
and t+3. A plot of the correlations by lag
produced  a normalized form of the impulse
response function for 1932-62 and 1966-80 time
periods of the system being modeled (Box and
Jenkins 1970). For each period, 48 precipitation
and 48 temperature correlation coefficients were
computed. While the a posteriori nature of these
analyses makes the use of a priori significance
tests very questionable, these results should be
viewed  as more exploratory than confirmatory.
Therefore  the a priori confidente  limits will be
used  to assess the significance of the
correlation coefficients.

The results of this modeling were somewhat
complex  to explain. In each time period, some
indications of climatic  gradients were found.
For example, in the 1932-62 period, the
correlation between tree rings and March
precipitation at lag t+2  were:

Above 6,000 feet: -0.102
5400 to 6,000 feet: -0.604
Below 5,400 feet: -0.636

The correlations of the lower two strata were
significant (p<O.OOl) in a statistical sense.
However, the t+2  lags were very difficult to
explain physiologically.
these correlations

More disconcerting,
completely lost statistical

significance (maximum (r1<0.15)  ín the 1966-80
period. Therefore these significant correlations
were either spurious or the climatic signa1 in
the red spruce was highly  nonstationary. The

latter problem may also indicate a loss of
climatic  signa1 comparable to what has apparently
happened to the declining red spruce in the
northern Appalachian Mountains (Cook 1987,
McLaughlin  and others 1987, Cook and others,
1987).

In the suite of 96 total correlations, only
three monthly temperature variables showed any
consistency through both time periods; July,
August, and September temperatures correlated
with t+l lagged tree rings as follows:

Stratum 1932-62 1966-80

Above 6,000 feet July
August
Sept.

5,400-6,000  feet July
August
Sept.

Below 5,400 feet July
August
SeDt.

-0.343"
-0.268
-0.223
-0.388""
-0.334"
-0.403**
-0.351"
-0.247
-0.365""

-0.273
-0.134
-0.132
-0.395"
-0.361
-0.326
-0.547""
-0.576**
-0 453"-

*p<o.10**, pco.05, ***p<o.o1

There is an indication, especially in the 1966-80
period, of an elevational gradient in the
response to the temperature variables. The high-
elevation stands seem to be less  sensitive to
summer temperatures than the lower stands. There
ís also an indication that the below-5,400-foot
spruce have been  more sensitive to summertime
temperature since 1966.

On the basis of these monthly temperature
correlations, the July, August, and September
temperatures were averaged into a summer season
temperature series (fig. 5). Of particular
interest is the summer of 1980, the warmest
summer ín the southern Appalachians since 1931.
According to figure 4, the poorest growth year
for red spruce at al1 elevations was 1981. Given
the t+l lag response of red spruce to summer
temperatures indicated above, the poor 1981
growth year was probably related to excessively
warm summer temperatures in 1980, which extended
to the highest elevations ín the mountains.

Linear regression analyses of the summer
temperature series versus prewhitened red spruce
scores indicated that the below-5,400-  and 5,400
to 6,000-foot  strata were equally sensitíve to
previous summer temperatures over the period
1932-83. The regression R21s were, respectively,
0.199 and 0.182. In contrast,
foot regression R2 was 0.137.

the above-6,000-
The prewhitened

scores and their temperature estimates are shown
in figure 6. Interestingly, al1 strata follow
the pattern of summer temperature almost
perfectly since 1978. This corresponds  to the
warmer than average temperatures since 1977.
It was previously suggested that the lower

elevation plots should be more stressed by
precipitation deficiency than the higher
elevation plots. In order to determine the
degree of drought sensitivity in the prewhitened
red spruce scores, the monthly Palmer Drought
Severity Indices (PDSI) (Palmer 1965) were
computed  from the divisional average temperature
and precipitation data. Simple correlations were
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Figure 5. --Aly,  August, and September average temperatures for the southern
Appalachian Mountains since 1931. The dashed line highlights
variance  at frequencies of l/lO year or less.

again computed  between monthly PDSI and tree ring
scores at lags t through t + 3 for the‘ time
periods 1932-62 and 1966-80. The results of
these simple correlation analyses were very
similar to the analyses reported earlier; the
correlations were generally not time stable.
However, as before, summertime drought and t + 1
lagged scores showed some time stability and
statistical significance.

the time period of 1952-55, which contained the

These correlations were as follows:

1Stratum 1966-80

Above 6,000 feet July 0.066 0.521**
August -0.004 0.640**
Sept. -0.281 0.728***

5,400-6,000  feet July 0.442** 0.521""
August 0.427"" 0.666""
Sept. 0.079 0.761"""

Below 5,400 feet July 0.457""" 0.458"
August 0.402"" 0.641**
SeDt. 0.244 0.771***

"p<O.lO, **p<o.o5, ***p<o.o1

In the 1932-62 period, there was a clear
indication of an elevatíonal gradient. The
highest stratum showed no summertime drought
signa1 in contrast  to the lowar strata. However,
al1 strata showed a very pronounced summertime
drought response ín the 1966-80 period. This
apparent increase in sensitivity to PDSI was
stronger than that indicated by summertime
temperature alone.
As before, the monthly PDSI's were averaged

into a summertime season  estimate  of drought
since 1931 (fig. 7). Of particular interest is

worst drought in the southern Appalachians since
1931. The very strong elevation-related gradient
in the tree ring scores for this period was
almost definitely caused  by severity of this
drought and the way in which it diminished with
increasing elevation. It is difficult to explain
why red spruce at al1 elevations showed
approximately the same leve1 of response to PDSI
since 1966. Given the shortness of this time
period, it is possible that these results are
questionable, even with the high significance
levels of the correlation coefficients. However,
this apparent increase in sensitivity to
summertime moisture availability should be
investigated more fully, as better statistical
methods and tree ring data become  available.

Linear regression analyses of the prewhitened
scores versus  summer PDSI for the period 1932-83
indicated a weaker relationship overa11 than for
summer temperature alone. The R2's for the
below-5,400-, 5,400- to 6,000-,  and above-6,000-
foot strata were 0.151, 0.114, and 0.035,
respectively. The actual and predicted scores
from these models are shown in figure 8. There
generally appears to be less time stability in
PDSI-spruce relationships.

Summer temperatures and PDSI were correlated
(r--0.38) because the temperature data were
partially used  to estimate  the PDSI's. However,
the leve1 of correlation was not high enough to
indicate that the PDSI correlations were
completely confounded by the temperature effects.
In fact,  when the PDSI and temperature variables
were used in a stepwise multiple regression
analysis to predict red spruce scores, each
variable entered  the model according to the
strength and sign of its original correlatíon

15
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Figure ó.--Actual  (solid)  and predicted (dash) prewhitened tree ring scores.
The summer temperature series (fig. 5) was used as the predictor
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JULY-AUGUST-SEPTEMBER PALbfER  DROUGHT INDEX

Figure J.--July, August, and September average Palmer Drought Severity
Indices  (PDSI) series for the southern Appalachian Mountains.
The dashed line highlights variance  at frequencies less than 1/10
year.

with the scores. The resulting R2's for the
below-5,400-, 5,400- to 6,000-,  and above-6,000-
foot strata were 0.252, 0.203, and 0.123,
respectively. The actual and predicted scores
from these models are shown ín figure 9.

syNT1IESIS  OF RESULTS

The results of this study indicated that red
spruce in the southern Appalachian Mountains have
exhibited, to varying degrees, some irregular
behavior in their ring widths since the mid-
1960's. At elevations above 6,000 feet,
statistical evidente  suggest a steplike decline
in radial increment  since about 1966. This
decline has not been  correlated with any specific
climatic  deviation ín this study. However, the
way in which the magnitude of the decline
increased with elevation suggested that the cause
of the decline was somewhat related to elevation.
A more thorough search for natural and
anthropogenic causes of this putative decline is
warranted. In addition, new and improved
collections of ring width data are highly
desirable to refine the statistical analyses and
valídate or refute the intervention results
presented here.

The decline of the southern red spruce at high
elevations could lead to bread  scale mortality,
as found in northern Appalachian stands.
However, the dendroclimatic modeling has revealed
an apparent singular difference between the
northern red spruce and southern red spruce
conditions ín the Appalachian Mountains since the
1960's. In the northern red spruce, the
dendroclimatic signa1 completely disappeared
after the trees entered  the post-1960 period of
declining ring widths (Cook 1987, McLaughlin  and

others 1987, Cook and others 1987). However,
based on the temperature modeling demonstrated in
this study (fig. 6), the dendroclimatic signa1
appeared to continue through the post-1965
decline period. Thus the reported decline does
not seem to represent a major loss of tree
vitality as was indicated for the northern red
spruce. At this stage of inquiry, the
Appalachian Mountain northern and southern red
spruce situations appear to be different.

The dendroclimatic analyses revealed that
previous summer temperatures correlated
significantly with red spruce ring width the
following year. The lag-1 negative temperature
correlations were remarkably consistent  with more
rigorously developed dendroclimatic models for
numerous stands of red spruce ín the northern
Appalachians (McGlaughlin  and others, [ín press],
Cook and others [in  press]). It ís increasingly
clear that the role of previous summer
temperature as a determinant of red spruce growth
and vigor ís genetically based. More
importantly, warm sununer temperatures appear to
be strongly correlated with past and present
declines of red spruce in the northern
Appalachians (Cook and others 1987). Should the
apparent increase ín sensitivity to prior-summer
temperatures be correct  for the below-5,400-foot
spruce, low-elevation spruce in the southern
Appalachians are likely to decline if warmer than
average summer temperatures persist. A warmer
world caused  by CO2 and other greenhouse gases
would not positively affect the future of red
spruce in North America.

The apparent increase ín red spruce
sensitivity at al1 elevations to drought since
1966 and with sensitivity to summer temperatures
since 1977, suggests that the southern red spruce

1 7
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*are in a prolonged period of climatic stress. A
similar pattern of increased climatic stress from
about 1938-60 preceeded  the current broad scale
decline of red spruce in the northern
Appalachians (Cook and others 1987). Presently
ít is impossible to say that this circumstantial
agreement ín symptomology is part of the
epidemiology of red spruce decline. However, it
is cause for concern and warrants further study.
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Utilizing Time Series Models and Spatial Analysis
of Forecast  Residuals for Tree Qing  Analysis of Red Spruce

J. Keith Ord and Janice A. Derr

SUNNARY

The information from a field study on permanent
plots established by the Tennessee Valley
Authority in the Great Smoky Mountains was used
to detect and evaluate  recent changes ín annual
ring width of red spruce (Pitea rubens Sarg.).
Time series models were fit to mean annual ring
widths of a maximum  of 5 mature red spruce trees
for each of 44 plots for the years 1900-84. The
mean leve1 of residuals from forecasts for the
last 20 years of the series were generally
negative, indicating a reduced ring width
relative to predicted ring width. These forecast
residuals showed substantial spatial dependence
that could not be explained by geographical
factors alone. When both geographical and biotic
factors, primarily measures  of stand quality,
were taken into account, the residual variation
in ring widths showed a weaker pattern of local
spatial dependence.

INTRODUCTION

The National Park Service (NPS) and the
Tennessee Valley Authority (TVA) conducted
studies on experimental plots in the Great Smoky
Mountains, producing a substantial data base of
information that can be used to examine annual
ring widths of red spruce (Pitea rubens Sarg.).
In this report we discuss one approach to
analyzing ring widths. The objective  of our
study was to detect recent changes during a
designated time series (1900-84) that may be
attributable to environmental changes, such as
the occurrence of acid deposition. Variations in
ring widths relative to historical  patterns are
assessed. Also described  is how to determine
whether such patterns exist because  of plot
characteristics or additional spatial effects.

The main steps of the study may be summarized
as follows:

1. Construct an average ring width time series
for each of the study plots established by
the TVA. Plots established by the NPS were
not included.

2. Develop measures  of recent increases or
decreases in ring width for each plot
relative to forecast values.

3. Relate the increases  or decreases in ring
width to geographical and biotic factors.

4. Determine whether there is any spatial
pattern to the values of excess or
deficiency and whether geographical and
biotic factors are responsible for the
pattern.

METNODOLOGYAND  RIWJLTS

Step l.--Construct an average ring width time
series for each of the study plots established by
the TVA.

The following are decisions  made during the
exploratory stage of the analysis:

Choice of Plots.--The  analysis reported in this
project concerns 48 experimental plots
established by the TVA in the Great Smoky
Mountains ín North Carolina. The decision  not to
include the experimental plots established by the
NPS in the same general region  was motivated by
time and resource constraints.

Choice of Measurement Scale.--Graphs  of the
time series for each of two cores taken from five
trees usually produced  very similar patterns.
Since the overa11 plot was the  focus for this
study, the two core series were averaged for each
tree. The selection of a designated time period
as a series for the entire plot was more
difficult, since individual trees may show
considerable variations from year to year. The
overa11 mean was chosen  as the measure  of average
ring width for the plot. Further consideration
of this issue is presented in the Discussion
section.

Selection of Trees and Time Frame for
Analysis. --Graphs for the time series of ring
widths for each of the 5 trees per plot were then
constructed for al1  48 plots. Examples of four
of these graphs are shown in figures 1 through 4.
From an examination of the 48 graphs, the
following decisions  were made:

1. Only red spruce would be used in the data
analysis to remove some heterogeneity from
the time series of ring widths averaged
across trees in a plot. Sample size was
not seriously reduced because  214 of 234
trees in the study were red spruce, and
only 4 plots had no red spruce.

2. Only red spruce trees with a pith date
earlier than 1940 would be included in the
study. Therefore 25 red spruce trees were
eliminated, and some heterogeneity caused
by an apparent initial rapid increase in
ring width in the early years of growth was
alleviated.

3. Ring widths from 1900 onward were analyzed.
The heterogeneity caused by the staggered
entrance of trees into the plot averages
and by the apparent initial rapid increase
in ring width was minimized.

J. Keith Ord is a professor in the Departments of Management Science and
Statistics. Janice A. Derr is managing director of the Statistical
Consulting Center, Pennsylvania State University, University Park,
Pennsylvania.
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Figure l.--Graph  of ring widths of red spruce (Pitea  rubens Sarg.) on plot
6 of 48 selected experimental plots established by the Tennessee
Valley  Authority in the Great Smoky Mountains.
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Figure 2.-- Graph of ríng widths of red spruce (Picea rubens Sarg.) on plot
18 of 48 selected experimental plots established by the
Tennessee  Valley  Authority in the Great Smoky Móuntains.
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Figure 3. --Graph of ring widths of red spruce (Picea rubens Sarg.) on plot
23 of 48 selected experimental plots established by the
Tennessee Valley  Authority in the Great Smoky Mountains.
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Figure 4.--Graph  of ring width of red spruce (Pitea  rubens Sarg.) on plot
31 of 48 selected experimental plots established by the
Tennessee Valley  Authority in the Great Smoky Mountains.



Choice of Explanatory Variables.--The plot
characteristics that were used in the study
included both geographical and biotic factors as
measured by survey teams. Average annual
temperature and total annual precipitation for
the three climatic regions ín the study (North
Carolina northern mountains, North Carolina
southern mountains, and Virginia southern
mountains) appeared to be fairly similar in the
occurrence of peaks and dips. Therefore, because
detailed models of precipitation are being
developed by others in the project, climate
variables were not included at this stage.

Upon completion of the exploratory data
analysis, 1 time series of ring widths was
constructed for each of the 44 remaining plots

(48 minus the 4 with no red spruce) from the TVA
study. The time series began with the year 1900
and ended with 1984. The series included only
those red spruce trees with pith dates earlier
than 1940. Each time series entry was an average
of the width of two cores from each tree, taken
from a maxímum of five red spruce trees. Table 1
summarizes characteristics of the data for each
plot and refers to geographical factors,  and
table 2 refers to biotic factors.

Step 2. --Develop measures  of recent increases
or decreases in ring width for each plot relative
to forecast values.

Time Series Analysis. --To determine the recent
pattern of tree ring growth on each plot, an

Table l.--Plot  characteristics and geographical variables

Observation Plot ELEV ASPECT LAT LONG

1 1 5200 21 36.6653 al.5375
2 2 5640 330 36.6597 al.5472
3 3 5200 210 36.6542 81.5333
4 4 6020 35 36.1055 82.1333
5" 5 6140 213 36.1000 82.1222
6 6 5700 90 35.3278 82.9612
7 7 5740 16 35.3500 82.9612
8 8 4480 205 36.3417 81.6500
9 9 6000 220 35.7375 82.3195

10 10 6060 225 35.7250 82.2917
ll ll 5520 220 35.7292 82.2792
12 12 6200 245 35.7445 82.3250
13 13 6000 255 35.8305 82.2555
14 14 6360 137 35.7750 82.2583
15 15 5880 303 35.8167 82.2555
16 16 6280 300 35.7833 82.2583
17 17 4480 340 36.3500 81.6417
18 18 5470 190 36.6375 81.6055
19 19 5490 345 36.6403 81.6055
20 20 5300 55 36.6638 81.5403
21 21 5340 55 35.7208 82.2792
22" 22 5420 142 35.7458 82.2722
23 23 5140 125 35.7417 82.2750
24 24 5100 190 35.7458 82.2667
25 25 5280 305 35.7333 82.3250
26 26 5340 123 35.7250 82.3125
27 27 5300 301 35.7222 82.3083
28 28 4140 23 35.7250 82.2722
29 29 5700 30 36.1042 81.8125
30" 30 6015 345 36.0917 82.1500
31 31 4540 235 36.3388 81.6542
32 32 5840 0 35.4638 83.1375
33 33 5040 90 36.1112 81.7958
34 34 5110 290 36.1083 81.8250
35" 35 6000 305 35.8250 82.2555
36 36 5780 120 35.8458 82.2417
37 37 4880 193 35.8388 82.2388
38 46 4400 50 36.3458 81.6500
39 54 5120 35 35.4750 83.1167
40 55 5800 268 35.4750 83.0958
41 109 5650 220 35.7888 82.2667
42 113 6240 265 35.7292 82.2917
43 125 5000 350 36.1083 82.1333
44 132 4480 215 36.1292 82.2917
45 153 5060 305 35.2945 82.9375
46 158 4620 20 35.3625 82.8833
47 159 5240 60 35.3388 82.9612
48 207 4880 340 35.3583 82.8542

%Plots eliminated from study because  no red spruce was present.
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Table 2.--Plot  characteristics and biotic variables

Observation SBALIVE SBADEAD SBAX LIVETREE DEADTREE TREEX

1 56.7 4.3 0.92951 6672 185 0.97302
2 38.6 5.9 0.86742 10329 247 0.97665
3 39.6 7.3 0.84435 7771 1186 0.86759
4 ll.6 11.1 0.51101 642 1482 0.30226
5* 41.5 6.0 0.87368 3064 544 0.84922
6 30.2 3.3 0.90149 4695 704 0.86961
7 31.2 3.7 0.89398 1507 408 0.78695
8 43.1 0.5 0.98853 1742 148 0.92169
9 48.2 3.5 0.93230 9798 111 0.98880

10 37.5 6.3 0.85616 4547 111 0.97617
11 30.1 2.8 0.91489 1532 988 0.60794
12 41.7 26.6 0.61054 10687 185 0.98298
13 14.7 2.6 0.84971 1705 309 0.84657
14 26.6 7.2 0.78698 1915 741 0.72101
15 25.1 12.5 0.66755 4176 1161 0.78246
16 12.0 12.6 0.48780 7141 543 0.92933
17 39.0 2.4 0.94203 2508 222 0.91868
18 55.7 3.3 0.94407 1174 383 0.75401
19 34.2 1.5 0.95798 1507 74 0.95319
20 45.1 4.9 0.90200 2002 99 0.95288
21 45.9 1.3 0.97246 1149 173 0.86914
22" 52.8 2.6 0.95307 8698 124 0.98594
23 37.7 0.0 1.00000 531 0 1.00000
24 60.7 1.1 0.98220 3286 222 0.93672
25 43.5 19.6 0.68938 3632 136 0.96391
26 69.0 0.0 1.00000 7401 0 1.00000
27 52.5 8.8 0.85644 3410 432 0.88756
28 63.2 10.1 0.86221 840 210 0.80000
29 18.5 15.1 0.55060 4707 334 0.93374
30" 45.0 10.0 0.81818 9044 2557 0.77959
31 35.4 2.7 0.92913 1680 297 0.84977
32 10.5 32.4 0.25060 1075 1631 0.39727
33 18.9 2.9 0.86697 1025 86 0.92259
34 36.3 4.9 0.88107 1248 556 0.69180
35" 15.5 0.2 0.98726 1520 25 0.98382
36 38.7 13.7 0.73855 4213 272 0.93935
37 59.6 0.9 0.98512 914 12 0.98704
38 34.1 0.5 0.9s555 1124 148 0.88365
39 5.9 0.8 0.88060 37 80 0.31624
40 39.5 2.4 0.94272 1606 219 0.88000
41 28.2 4.9 0.85196 2718 292 0.90299
42 15.3 0.0 1.00000 3497 0 1.00000
43 38.4 4.1 0.90353 8686 1819 0.82684
44 46.0 0.4 0.99138 1594 70 0.95793
45 46.7 0.9 0.98109 1557 173 0.90000
46 21.6 1.9 0.91915 1890 400 0.82533
47 10.5 7.8 0.57377 1408 2088 0.49275
48 28.2 19.1 0.59619 803 738 0.52109

Xplots eliminated from study because  no red spruce was present.

autoregressive-integrated-moving average (ARIMA)
time series model for each of the plots was first
developed. Kendall and others (1983) and
Vandaele (1983) provide  details of ARIMA  models
and the underlying assumptions .
Time Series Modeling.--Various  years of the

series indicated marked trends of tree ring
growth. TO accommodate trends, the series were
differenced where necessary. Other approaches to
this problem are covered in the Discussion
section. In this data set, it was never
necessary to difference more than once. A
s-ary  of the fitted models is presented in
table 3. From the table, it can be seen that

many of the series were described  satisfactorily
by an autoregressive scheme of order 2,
occasionally  with higher order moving average
(MA) terms.
The MA terms improved the fit as measured by

the diagnostics  but did not materially affect the
forecasts. The autoregression [ARCP)]
soefficients  were usually both positive with ,$1  +
92 in the range 0.6 to 0.9, indicating a carry-
over from one growing season fio the next, as
would be expected. Wh=n 41 + 92 exceeded  0.9,
nonstationarity ín the series was evident, and
differencing was performed. A low-order MA
scheme usually gave an adequate description of
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Table 3.--Summary  of autoregressive-integrated-moving average models for
each plot

Plot No. Difference Las Structure+ Comments
AR MA

1 No c>
2 No
3 No
4 No
6 No
7 No
8 Yes
9 No

10 No
11 No
12 No
13 Yes
14 Yes
15 Yes
16 Yes
17 Yes
La No
19 No
20 Yes
21 Yes
23 Yes
24 Yes
25 No
26 No
27 No
28 No
29 Yes
31 Yes
32 No
33 Yes
34 No
36 No
37 No

;
2
2
2
2
0
2
2
3
2
0

ch
0
0
2
2
0
1
0
0
2
2
2
2
0
0
2
0
2
2
2

1
2
2
0

0
0
0
0
0
0
2

0
0
0
0
0

(7?)
(114,lO)

0
Short series

0
0
0
1
0

CL

6,
0
2
0
1
3
0
0
0

eo
(Lb)

(6)
(1,2,6)

0

(lo?)

Short series
Short series
Short series
Short series
Short series
Short series

46 No
54 No
55 No

109 Yes

Structural
change in
series?

113 Yes
125 Yes
132 Yes
153 Yes
158 Yes
159 Yes
207 No

First seven
terms deleted

Short series

(2,5)
(194)

(3,7?)
Short series

+ k indicates lags 1, 2, . . . . k
(k) indicates lag k only
(j,k)  indicates lags j,k only
(k?)  indicates lag k a possibility
AR = autoregression coefficient
MA = moving average
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the differenced series. It is well known that AR
schemes with a root of the auxiliary equation
near unity can often be well approximated by a
low-order MA scheme with a single difference.
Therefore the models are not very different ín
practice despite their distinct theoretical
properties.

The only series that caused  major problems was
that for plot 109, where major íncreases ín the
first 7 years were followed by steady declines.
After the data for the first 7 years were
deleted, a satisfactory model was fitted. It can
be assumed  that the use of ring width rather than
incrementa1 basal area was the cause of these
nonstationarity problems.

Measures of Recent  Relative Change in Ring
Width.--To assess recent relative increases or
decreases ín ring width, each series over the
periods was forecasted:

1. 1965-1984, using 1964 as the forecast
origin.

2. 1975-1984, using 1974 as the forecast
origin.

The residuals, the difference between  observed
and predicted values, were then computed  for
each year in the period. The means and standard
deviations of these residuals were computed  for
each plot (table 4). It should be noted that the
models were fitted to the entire series, 1900-84,
and forecasts were then generated from the
forecast origin. A pure forecasting method would

have involved fitting to 1964 (or í974)  and then
forecasting. However, the risk of structural
changes ín the series was such that the pure
forecasts might misrepresent recent trends.
Although our approach biases the residuals
somewhat towards zero, the method seemed to
provide a clearer picture of recent developments.

Because changes ín ring width might be
considered  ín either absolute 01:  percentage
terms, also considered  were the indicators:

proportional change  = average of residuals
average ring width

over the two forecast periods. These values are
also listed in table 4 as PCT20 and PCTlO.

Assessment of Mean Change.  --One should note
whether the residual ring widths are below the
expected value of zero for the periods
considered. The results of one-tailed t-tests on
the data in table 4 were as follows:

Adjusted
Variable Mean t-value t-value

RES20 -17.47 -3.28 -1.89
PCT20 -0.108 -3.46 -2.34
RES10 4.43 0.93 0.50
PCTlO 0.022 0.79 0.47

Table 4.--Summary  statistics from time series analysis

Summarv Statistics+
Observation OVMEAN RES20 R20SD PCT20 RES10 RlOSD PCTlO

1
2
3
4
5"
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22"
23
24
25
26
27
28
29
30"
31
32
33
34
35"

189.5 18.3 34.4
158.5 -34.5 25.3
187.3 -48.1 24.8
147.1 -50.5 20.6

0.9657 -14.3
-0.21767 -4.8
-0.25681 -1.0
-0.34330 -15.6

-0.01863 5.2
-0.25085 -35.1
0.11937 93.7
-0.30071 -22.1
-0.22711 -28.8
-0.17925 -30.2
-0.09963 -5.4
0.11447 62.6
0.09958 41.1
-0.13973 26.6
0.62565 85.6
0.01790 15.4
-0.21393 -17.6
-0.40074 6.6
-0.24989 -9.2
-0.47322 -39.7

43.3 -0.07546
21.5 -0.03028
9.9 -0.00534

22.1 -0.10605

198.6 -3.7 30.4
147.9 -37.1 23.1
375.3 44.8 63.5
140.0 -42.1 30.8
138.7 -31.' 23.9
321.9 -57.7 52.1
163.6 -16.3 22.4
152.0 17.4 34.7
259.1 25.8 31.4
132.4 -18.5 18.6
134.9 84.4 75.5
189.9 3.4 30.6
182.3 -39.0 22.5
81.6 -32.7 8.3

232.5 -58.1 37.1
239.0 -113.1 48.9

33.7 0.02613
26.9 -0.23732
63.9 0.24967
16.0 -0.15786
29.9 -0.20764
43.0 -0.09382
26.9 -0.03301
35.6 0.41184
31.3 0.15863
21.8 0.20091
48.1 0.63454
13.7 0.08110
29.1 -0.09654
7.6 0.08088

37.3 -0.03957
43.5 -0.16611

182.4 -25.1 36.9 -0.13761 24.3 48.5 0.13322
192.5 -45.8 30.4 -0.23792 36.6 32.0 0.19013
126.5 -26.4 21.0 -0.20870 -16.1 24.8 -0.12727
172.6 -20.7 31.2 -0.11993 -23.5 40.5 -0.13615
131.2 -31.2 28.2 -0.23780 -24.0 32.3 -0.18293
125.5 -19.3 16.2 -0.15378 -10.3 19.5 -0.08270
82.7 8.4 22.2 0.10157 27.7 23.2 0.33495

203.9 -55.5 20.4 -0.27219 -5.8 22.1 -0.02845
165.2 -15.9 24.2 -0.09625 31.6 26.0 0.19128
184.3 -3.4 37.7 -0.01845 26.6 48.5 0.14433
173.8 21.3 30.8 0.12255 26.8 38.9 0.15420
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Table 4.--Summary  statistics from time series analysis--Continued

Summarv Statistics+
Observation OVMEAN RES20 R20SD PCT20 RES10 RlOSD PCTlO

36 103.1 -19.4 16.5 -0.18817 -10.1 23.5 -0.0979
37 112.1 -12.4 15.8 -0.11062 -5.8 21.7 -0.05174
38 189.5 -14.5 41.8 -0.07652 -24.5 51.2 -0.12929
39 136.5 -27.4 20.9 -0.20073 -21.9 25.1 -0.16044
40 236.2 -12.5 31.0 -0.05292 -20.8 33.1 -0.08806
41 288.5 41.0 31.6 0.14211 33.4 21.3 0.11577
42 187.7 -22.1 32.3 -0.11774 -3.5 35.6 -0.01865
43 185.9 24.6 36.8 0.13233 50.7 39.6 0.27273
44 189.2 -4.9 33.4 -0.02590 23.6 39.9 0.12474
45 139.3 -88.8 34.8 -0.63747 -35.7 30.4 -0.25628
46 176.9 1.3 23.5 0.00735 -7.8 32.2 -0.04409
47 273.3 -45.2 37.5 -0.16539 -7.2 37.6 -0.02634
48 127.9 14.2 13.7 0.11102 17.5 14.8 0.13683

+ OVMEAN = overa11 mean of series.
RES20 = residuals from forecasts for last 20 years.
R20SD = standard deviation of RES20 values.
PCT20 = RES20/0VMEAN.
RESlO,  RlOSD,  PCTlO are defined similarly.

* Plots eliminated from study because  no red spruce was present.

The adjusted t-values were computed  following the
approach described  by Cliff and Ord (1981)
modified to the one-sample case. The adjustment
takes account of the positive spatial dependence
among the data and may be written as:

tadj i t (1 - 1),

where 1 is defined in equation (1) under Step 4.
Evidently the 20-year residual ring widths

have a mean that is significantly less  than zero,
while the null hypothesis of a zero mean ís
accepted for the lo-year values. Therefore a
drop is indicated ín average ring width in the
1960's that has subsequently stabilized at that
lower level.

Step 3.--Relate  recent increases and decreases
in ring width to geographical and biotic factors.

In this step, the changes in ring width were
related to the various plot characteristics to
determine íf there were any  explanation for the
changes.

Regression Analysis. --Each of the four residual
ring width measures  was modeled using stepwise,
regression with the following variables:

geographical:
(LONG)  > (latitude)2"i=d~T,("T:ong~~u~~~d~
LONG2, latitude * longitude = LATLONG,
elevation (ELEV), and aspect (ceded as sine
and cosine,  SASP and CASP).

biotic: number of live trees (LIVETREE),
number of dead trees (DEADTREE), stand basal
area of live trees (SBALIVE), stand basal
area of dead trees (SBADEAD), and two derived
indices:

TREEX = (LIVE&F?%TREE)

sBAX = (SBAL;:Eti:%ADEAD)

where TREFX ís proportion of live trees, and SBAX
ís the proportion of live basal area. The values
of these variables are listed in table 1.

The quadratic factors of latitude and longitude
were included to allow a low-order trend surface
analysis (Cliff and others 1975). However,
initial runs using only the geographical
variables showed virtually no correlation between
av of these variables and the residual ring
width measures; therefore they have not been
reported separately. A total of eight analyses
are reported in tables 5 through 8. For each of
the residual ring width measures, the analysis
was performed using both unweighted and weighted
least squares (LS). The weights used were the
standard deviations given in table 4. In al1
cases, the significance leve1 for a variable to
leave or stay was set at 0.25. The residuals
from- the regression analyses are given in tables
9 and 10.

Interpretation of Regression Results.--
Comparisons within and across tables 5 through 8
show the following:
1. The value of R2 is in al1  cases somewhat

higher for weighted LS than for
unweighted. A high standard deviation in
the time series residuals shows an erratic
ring width pattern. Therefore the
weighting is useful because greater
emphasis is given to the plots with more
stable ring width development. Otherwise
the same variables were selected by the
stepwise procedures  for both estimation
procedures, and the two sets of estimates
were broadly consistent  for each of the
four dependent variables.

2. The proportional change indicators yield
models with a higher degree of explanatory
power than those based on absolute changes.
Since average ring widths vary considerably
between sites, use of the proportional
change indicator  seems preferable.
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Table 5.--Regression  analysis for the dependent variable 20-Year  mean
residual ring width (RLS'O)

-

Unweighted least squares

suln  of Mean
SCL  ie df squares square F value Prob>F

Model 4 10813.450 2703.362 2.466 0.0608
Error 39 42758.529 1096.373
C total 43 53571.979
Root MSE 33.111517 R-square 0.2018
Dep mean -17.465909 Adj R-sq 0.1200
C.V. -189.578

Parameter Standard T for HO:
Variable df estímate error Parameter=O Prob > ITl

Intercept 1 70.597735 70.426505 1.002 0.3223
ELEV 1 -0.013709 0.010648 -1.287 0.2055
SBAX 1 -69.517093 40.250901 -1.727 0.0921
TREEX 1 91.734416 36.388501 2.521 0.0159
SBALIVE 1 -0.916871 0.442469 -2.072 0 * 0449

Weighted least squares

Source df
sum of

squares
Mean

square F value Prob>F

Model 4 800896 200224 4.859 0.0028
Error 39 1607051 41206.433
C total 43 2407947
Root MSE 202.994 R-square 0.3326
Dep mean -13.665677 Adj R-SQ 0.2642
C.V. -1485.43

Parameter Standard T for HO:
Variable df estimate error Parameter=O Prob > ITI

Intercept 1 99.:87126 81.765087 1.213 0.2324
ELEV 1 -0.017920 0.011910 -1.505 0.1405
SBAX 1 -105.865 45.857356 -2.309 0.0264
TREEX 1 135.208 39.969084 3.408 0.0015
SBALIVE 1 -1.201380 0.502896 -2.389 0.0218

3. The regression analyses for geographical 4. The most important variable in almost al1
variables provided only very little cases was the tree index, TREEX, which ís
explanatory power. When the biotic probably an indicator  of stand health, and
variables were also included, elevation strong, positive correlation is to be
became important, and the residual ring expected. The  other majar biotic variable
width became more negative as elevation was SBALIVE, but this appears with a
increased. This suggests that the higher negative sign in the regression. SBADEAD
elevation plots did worse than average over and the stand basal area index (SBA) also
the lo- and 20-year periods considered. appear on occasion, again
Tne only other geographical variables that signs in al1 cases.

with negative
The interpretation of

appeared ín any models were LONG2 and SIN
(aspect). The coefficient on LONG2
suggests a downward trend in the lo-year
change variables from east to West. Since
the plot locations extended approximately
northeast to southwest, this may reflect
the influente  of climatic factors.  T h e
coefficient for SIN (aspect)  indicates that

these effects is unclear, but these
variables may relate to other biotic
factors such as the age  of the stand and
the degree of competition.

Overall, the weighted regressions on the
proportional change indicators appear to give
a reasonable explanation of the variations in

the proportional change variable for the
lo-year period is higher ín plots with a
southerly aspect. Again, this may reflect
climatic effects.

residual ring width.

SteP 4.--Determine  whether there is any spatial
Pattern  to the values of excess or deficiency and



Table 6.--Regression  analysis for IO-year  mean residual ring width (RESlO)

Unweighted least squares

sum of Mean
Source df squares square F value Prob>F

Model 2 6777.608 3388.804 3.939 0.0272
Error 41 35269.460 860.231
C total 43 42047.067
Root MSE 29.329690 R-square 0.1612
Dep mean 4.427273 Adj R-sq 0.1203
C.V. 662.4776

Parameter Standard T for HO:
Variable df estimate error Parameter=O Prob > ITI

Intercept 1 814.995 404.974 2.012 0.0508
SBALIVE 1 -0.763081 0.303229 -2.517 0.0159
LONG2 1 -0.115851 0.059378 -1.951 0.0579

Weighted least squares

Sun of Mean
Source df squares square F value Prob>F

Model 2 301627 150813 4.325 0.0198
Error 41 1429655 34869.627
C total 43 1731281
Root MSE 186.734 R-square 0.1742
Dep mean 7.603876 Adj R-sq 0.1339
C.V. 2455.175

Parameter Standard T for HO:
Variable df estimate error narameter=O Prob > ITI

Intercept 1 1097.709 474.049 2.316 0.0257
SBALIVE 1 -0.852323 0.342500 -2.489 0.0170
LONG2 1 -0.156754 0.069541 -2.254 0.0296

whether this can be accounted for 'v
geographical and biotic factors.

In this section, the spatial methods used are
first described. Then the spatial analysis for
the residual ring widths and for their residuals
from the regression equations developed in step 3
is presented. The objective of the spatial
analysis is to discover  if there is any spatial
pattern in the recent changes in ring width, both
among the initial values and the residuals, from
the regression equations.

Spatial Methods.--The  first step in any spatial
analysis is to determine whether or not there is
any evidente of spatial pattern among the data,
given the plot locations. If the n plots have
observed values xi (i - 1, . . . . n), we set zi -
Xi - W and use the spatial autocorrelation
statistic:

(1)

where S, - 1 c wij  and the (wij  are a set of non-
i .i

negative weights to be specified, with wii  - 0.

Under the null hypothesis ($) of no spatial
autocorrelation (or independence), it may be
shown that:

E(I) = -l/(n -1).

Cliff and Ord (1981) show the distribution of 1
under HG to be approximately normal, provided
that n is not too small. For the configurations
of weights used and the number of plots available
(n = 44), the normal approximation ís
satisfactory. It should be noted that 1 is not
defined quite like a regular correlation
coefficient; in particular, the values tend to be
closer to the origin than one would expect. For
this reason, the magnitudes of the standard
deviates

are often more useful than the values of I
themselves. From Cliff and Ord (1981),  the
variance  of 1 under HO is:

V(I) = EU2> - MI>12,
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Table 7.--Regression  analysis for ZO-year  mean residual ring width
divided by overa11 mean ring width (PCT20)

Unweighted least squares

sunl  of Mean
Source df squares square f value Prob>F

Model 5 0.466992 0.093398 2.592 0.0411
Error 38 1.369366 0.036036
C total 43 1.836359
Root MSE 0.189831 R-square 0.2543
Dep mean -0.107706 Adj R-sq 0.1562
c. v. -176.249

Parameter Standard T for HO:
Variable df estimate error narameter=O Prob > ITI

Intercept 1 0.995842 0.583306 1.707 0.0959
ELEV 1 -.0000856071 .00006109282 -1.401 0.1692
SBAX 1 -1.074991 0.566563 -1.897 0.0654
SBADFAD 1 -0.013608 0.011104 -1.225 0.2279
TREEX 1 0.579832 0.215236 2.694 0.0105
SBALIVE 1 -0.00389848 0.002933337 -1.329 0.1918

Weighted least squares

Source df
sum of Mean

squares square F value Prob>F

Model 5 35.672534 7.134507 6.069 0.0003
Error 38 44.671739 1.175572
C total 43 80.344273
Root MSE 1.084238 R-square 0.4440
Dep mean -0.073059 Adj R-sq 0.3708
c. v. -1484.05

Parameter Standard T for HO:
Variable df estimate error Parameter- Prob > ITI

Intercept 1 1.311741 0.583284 2.249 0.0304
ELEV 1 -.0000828751 .00006361611 -1.303 0.2005
SBAX 1 -1.582828 0.531610 -2.977 0.0050
SBADEAD 1 -0.022603 0.011481 -1.969 0.0563
TREEX 1 0.800385 0.214337 3.734 0.0006
SBALIVE 1 -0.00426758 0.003139655 -1.359 0.1821

where

E(1')  = (n[(n2  - 3n + 3)S, - n S, + 3Si]

bz[(n2  - n)S, - 2n S, + 6.$])/

(n - 1) (n - 2) (n - 3)$,

where n = number of pl'ots,
so - c 8 wij'

Sl - c Y$ (tij  + wij  wji) 9

% = c ;w,.  + w.,)2, and

wi, = i wij  and w.i = 1 wji
j 3

(2)

Choice of Weights. --Given the irregular array
of plot locations, the choice of weights for use
in (1) is somewhat arbitrary. However, when the
variables X are normally distributed, it is
known (Clif% and Ord 1981) that 1 is the locally
most powerful test for alternatives of the form:

Hl: Var(x> = a2[' - EE]-l

where R and c are parameters and W ís symmetric.
The null h

ypL2
othesis then becomes  EO: 13 = 0, or

Var(x) - 0 1. Since we are interested in
detecting local spatial similarities, this
suggests that wij > 0 when plots i and j are
close, but wij = 0 when they are distant.

33



Table 8.--Regression  analysis for IO-year  mean residual ring width
divided by overa11 mean ring width (PCTIO)

Unweishted least sauares

sum of Mean
Source df squares square F value Prob>F

Model 7 0.678485 0.096926 4.467 0.0012
Error 36 0.781208 0.021700
C total 43 1.459693
Root MSE 0.147310 R-square 0.4648
Dep mean 0.021891 Adj R-sq 0.3607
c. v. 672.9362

Parameter Standard T for HO:
Variable df estimate error Parameter=O Prob > ITI

Intercept 1 3.999241 2.193178 1.823 0.0765
ELEV l-..0000812191 .00004886896 -1.662 0.1052
SASP l -0.053525 0.035049 -1.527 0.1355
LONG2 1 -.0.000375621 0.0003257647 -1.153 0.2565
SBALIVE 1 -0.00354181 0.002301411 -1.539 0.1326
SBAX 1 -1.411441 0.455795 -3.097 0.0038
SBADEAD 1 -0.020464 0.009001847 -2.273 0.0291
TREFX 1 0.520329 0.181001 2.875 0.0067

Weighted least squares

Sun¡  of Mean
Source df squares square F value PrÓb>F

Model 7 27.779442 3.968492 5.605 0
Error 36 25.489160 0.708032
C total 43 53.268603
Root MSE 0.841447 R-square 0.5215
Dep mean 0.035922 Adj R-sq 0.4285
C.V. 2342.437

.0002

Variable df
Parameter Standard T for HO:
estimate error Parameter=O Prob > ITI

Intercept 1 4.831085 2.305746 2.095 0.0432
ELEV 1 -0000758574 .00005072042 -1.496 0.1435
SASP 1 -0.069365 0.033810 -2.052 0.0475
LONG2 1 -.0.000484338  0.0003417928 -1.417 0.1651
SBALIVE 1 -0.00324435 0.002267685 -1.431 0.1611
SBAX 1 -1.564668 0.436777 -3.582 0.0010
SBADEAD 1 -0.024429 0.009060183 -2.696 0.0106
TREEX 1 0.554004 0.181281 3.056 0.0042

Furthermore, given the rapid changes in local
topography that are possible in the study area,
it ís reasonable to set wij = 0 when there are
severa1 plots between i and j. Given that (1) is
being used primarily as an exploratory device,
these guidelines may be incorporated into the set
of weights by use of nearest neighbor linkages
(Cliff and others 1975). The exact specification
of weights is not critical. Thus two sets  of
weights are considered:
1. Wij = 1, if plots i and j are nearest

neighbors, otherwise
= 0.

2. Wij = 1, íf plots i and j are first or
second nearest neighbors, otherwise

= 0.
These weights are not symmetric, but this does
not cause any problems. In each case, a distance
criterion was used to elimínate linkages across
very long distances. The sets of neighbors are
summarized in (B) of the Appendix. These weights
were used in al1 subsequent analyses. A program
listing for a simple FORTRAN program to compute 1
and the corresponding standard deviate is listed
in the Appendix (A). For the first nearest
neighbor, SO = 42, Sl = 68, and S2 = 192. For
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Table 9 .--Residuals from ordinary least squares regression for RESSO,
RESlO, PCTZO, PCTlO, respectively

Observation RRESPO RRESlO PCRESZO PCRESlO

1
2
3
4
5"
6
7
8
9

10
ll
12
13
14
15
16
17
18
19
20
21
22"
23
24
25
26
27
28
29
30"
31
32
33
34
35"
36
37
38
39
40
41
42
43
44
45
46
47
48

46.334 -15.807 0.26047 -0.04145
-21.678 -19.937 -0.13374 -0.12678
-31.993 -15.635 -0.14916 -0.08203
-20.136 -40.225 -0.25344 -0.21953

14.431 10.602 0.10100 0.12306
-10.443 -28.935 -0.07859 -0.13183
59.306 83.942 0.21011 0.17438

-12.145 -15.249 -0.11850 -0.11506
-14.668 -30.645 -0.11789 -0.24663
-17.193 -37.930 0.08391 0.00267
-11.397 -3.404 0.04620 0.01085
23.945 42.668 0.14752 0.25374
55.349 30.302 0.27781 0.23123

-10.846 14.604 -0.10033 0.05556
59.557 63.661 0.37119 0.14592
11.190 2.355 0.07027 -0.03010
12.921 -18.585 0.09821 0.04559
-17.522 -10.792 -0.29572 0.02309
-39.395 -19.506 -0.13238 -0.02975
-80.534 -35.373 -0.27386 -0.03539

-12.884 22.290 -0.05130 0.16258
-8.476 51.982 -0.03284 0.27436

-25.229 -12.730 -0.13405 -0.16915
22.956 -0.910 0.10552 0.02366
-2.885 -14.081 -0.04947 -0.13986
ll.355 7.095 0.05162 0.04954

-14.474 2.247 -0.07823 0.00537

-44.763 -21.355 -0.19854 -0.14849
-15.831 25.363 -0.08487 0.08936
-11.938 1.136 -0.07265 -0.00901
51.827 15.167 0.31837 0.14705

-10.105 -11.982 -0.10263 -0.06974
16.486 8.212 0.04258 -0.01989
-6.060 -41.126 -0.00886 -0.16374
9.809 -32.049 0.03889 -0.00258

17.441 -5.710 0.13757 -0.01437
50.106 23.982 0.19884 0.01594
-15.341 -22,285 -0.02459 -0.07543
44.717 46.526 0.26187 0.26913
9.138 28.242 0.05684 0.07427

-61.570 -18.162 -0.47302 -0.20437
2.029 -10.456 0.02660 -0.08615

-31.393 -16.830 -0.18230 -0.17132
30.003 19.321 0.24156 0.15529

* Plots eliminated from study because  no red spruce was present.

first and second neighbors, SO = 80, SI = 138,
and S2 = 670.

The results for the four initial residual ring
width measures  are summarized ín table ll. The
spatial autocorrelation generally appears to be
higher, based on the second ,nearest  neighbor
weights. Given that neighboring plots may
sometimes have different aspects of soil
conditions, ít can be assumed the set of weights
based on the first and second order nearest
neighbors gives a more reliable indication of
spatial structure.

Spatial autocorrelation coefficients were also
calculated for the residuals from the regression

analyses shown in tables 9 and 10. These values
are presented ín table 12. The standard deviates
were computed  using the same formulae as were
used to obtain table ll. More exact expressions
are given by Cliff and Ord (1981),  but these are
very tedious to use, and the differences in
magnitude are generally slight.

Interpretation of Spatial Analyses.-The
results in table ll show clearly that pronounced
spatial dependence exists, whichever measure  of
residual ring width is used. The first question
that arises is whether such dependence can be
ascribed to purely geographical effects.
However, the geographical variables do not



Table lO.-Residuals  from weighted least squares regression for RESZO,
RESlO. PCTZO. and PCTIO. resnectivelv

Observation RRES20 RRESlO PCRESPO PCRESlO

1
2
3
4
5"
6
7
8
9

10
ll
12
13
14
15
16
17
18
19
20
21
22"
23
24
25
26
27
28
29
30*
31
32
33
34
35"
36 -18.279 -14.585 -0.12892 -0.05920
37 17.310 7.456 0.02603 -0.04263
38 -9.898 -48.106 -0.01409 -0.16916
39 22.400 -31.660 0.09583 0.02397
40 19.639 -2,465 0.12665 -0.02988
41 44.136 20.611 0.15549 -0.00942
42 -21.431 -26.640 -0.06461 -0.10528
43 44.173 43.168 0.25985 0.25656
44 5.930 26.627 0.04146 0.05310
45 -59.933 -15.349 -0.47767 -0.21879
46 -4.259 -10.251 0.00789 -0.07634
47 -31.989 -17.088 -0.23592 -0.16713
48 28.479 19.917 0.28237 0.17932

46.282 -21.521 0.24740 -0.06286
-27.445 -27.201 -0.17263 -0.16189
-35.316 -22.902 -0.16155 -0.10963
-14.947 -45.974 -0.28882 -0.23249

12.526 12.103 0.07637 0.13770
-8.492 -27.345 -0.08494 -0.12596
56.781 77,765 0.20111 0.14621

-11.847 -16.480 -0.14614 -0.14344
-19.367 -33.018 -0.16035 -0.27380
-7,760 -41.048 0.11976 -0.01109

-23.543 -5.178 0.06126 0.02172
18.035 38.016 0.08884 0.21764
57.645 26.732 0.25975 0.22866
-18.072 10.880 -0.14416 0.03250
37.223 58.788 0.19865 0.09214
5.943 -4.243 0.05390 -0.05542

23.991 -23.934 0.13074 0.02145
-20,837 -18.059 -0.32424 -0.00782
-42.430 -26.236 -0.15413 -0.04206
-76.887 -37.081 -0.27356 -0.03565

-17.231 19.823 -0.08004 0.16041
-4.281 51.511 -0.03817 0.25346

-37.022 -14.344 -0.13453 -0.16752
28.356 -0.332 0.08779 0.01210
-2.566 -15.003 -0.04214 -0.15656
13.939 6.884 0.10000 0.06398
-35.314 -5.038 -0.19339 -0.01416

-48.186 -28.191 -0.20507 -0.17886
-25.403 26.303 -0.09078 0.12401
-23.449 -6.225 -0.13246 -0.01701
56.338 9.554 0.34085 0.12116

* Plots eliminated from study becadse no red spruce was presented.

provide  any degree of explanatory power, and the major variables ín these regressions related to
spatial pattern of the residuals is essentially stand health. While this analysis indicates that
the same. The next question ís whether the the ring width changes are related to current
biotic factors account for some or al1  of the stand health, the reasons for that current health
spatial structure. status remain undetermined.

When tables ll and 12 are compared, it may be
seen that the leve1 of spatial autocorrelation
has diminished ín al1 cases. For the variable
PCT20, the autocorrelation has become negative,
but this may be due to the uncorrected effects of
autocorrelations among the explanatory variables.
One may generally conclude that the regression
analyses account for much, but not all,  of the
spatial pattern found in the residual ring width
values. However, one should recall that the

DISCDSSION AND SUMUARY

The results of steps 1 through 4 suggest an
overa11 decrease  in ring width increment among
red spruce in the Great Smoky Mountains from 1965
to 1975 or 1984, relative to time series
forecasts for those time periods. The magnitude
for these decreases appeared to be related to
elevation, factors of stand quality, and the
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Table ll.--Results  of tests for spatial autocorrelation among original
ring width residuals

Variable+ Coefficient" Standard Deviate"

NNl NN NNl NN

RES20 0.256 0.425 1.48 3.21

RES10 0.388 0.466 2.15 3.47

PCTZO 0.194 0.324 1.17 2.53

PCTlO 0.314 0.403 1.78 3.05

+ RES20 and RES10 refer to the residuals from the time series models for
ring widths averaged over the forecast periods, 20 and 10 years,
respectively. PCT20 and PCTlO denote RES20 and RES10 divided by the
overa11 mean ring width for the whole series.

* NNl and NN refer to the sets of weights for the spatial autocorrelation
coefficient based upon first and upon first- and second-order nearest
neighbors, respectively.

Table 12.--Results  of tests for spatial autocorrelation among regression
residuals+l/

Variable Coefficient
NNl NN

Standard Deviate
NNl NN

Unweighted Regression

RES20 0.018

PCTZO -0.187

RES10 0.277

PCTlO 0.093

Weighted Regression

RES20 -0.082

PCT20 -0.292

RES10 0.266

PCTlO 0.087

0.054 0.22 0.55

-0.205 -0.85 -1.28

0,287 1.57 2.20

0.203 0.60 1.59

-0.133 -0.30 -0.76

-0.393 -1.39 -2.59

0.268 1.51 2.06

0.202 0.57 1.57

l/S ee table 11 for definitions of variables, coefficients, and standard
deviates. Regression residuals are listed in tables 8 and 9.



relative decreases of first and second order
nearest neighboring plots. These findings should
be compared to those generated by other
approaches to gain an understanding of the impact
of certain key decisions  in the stages of the
analysis.

Both Landau and others (1985) and Cook (1987)
recommended that annual basal area growth
increment is preferable to ring width as a
measure of annual productivity. Use of this
measure  could have reduced  the nonstationarity ín
severa1 of the time series. One approach to time
series that display marked trends is to transform
the data (Cook 1987). Instead, we followed the
usual ARIMA  paradigm and differenced the series
where there were marked trends; 20 of the 44
series actually required differencing. It would
be useful to compare forecasts obtained from the
untransformed, but possibly differenced, series
to those obtained from transformed series.
Additionally, the average of the ring width of
the trees' cores that met our inclusion  criteria
was used. Landau and others (1985) recommended
the use of trimmed means. Specific circumstances
of other data sets may determine the advisability
of one procedure over another as the best way to
minimize heterogeneity.
The methods used ín each of these steps are

capable of further refinement, and severa1
suggestions are included in the Recommendations
section. Nevertheless, the basic paradigm
represents a substantive approach to the
evaluation of recent trends in the width of tree
rings.

Results obtained from the steps taken in this
study should be compared with results generated
from other approaches. Future studies might
include the use of basal area increment rather
than ring width as a measure  of annual
productivity and may incorporate transfer
function models of climatic factors as well as
intervention analysis to filter out the effect of
important forest perturbations.

1.

2.

3.

4.

5‘.

REXOMMENDATIONS

Following Landau and others (1985),  it is
recommended that future studies should use
incrementa1 basal area rather than ring
width.
The possibility of using trimmed means rather
than arithmetic means should be considered.
However, the issue of how well measurements
on five healthy trees reflect overa11 stand
health requires further examination.
It is important to look for changes in ring
width or other indicators relative to what
might be expected. The forecasting approach
used ín this report is one way of excluding
such trends, but others should be examined.
The study of proportional changes seems
preferable to that of absolute changes.
In future time series analyses, automated
procedures  might be used (AUTOBOX, developed
by David Reilly of Automatic  Forecasting
Systems, Inc.).
Where known problems of fires, aphids, or
infestations occur on particular plots,
intervention analysis should be used to
filter out such effects.

6.

7.

8.

The inclusion of biotic variables in the
regression models serves to link the change
indicators to stand health. However, it does
not resolve how the stands came to be in that
condition. The lack of any worthwhile
correlations between the indicators and the
locational variables suggests that other
factors may be at work ín determining stand
health; furthermore, the high levels of
spatial autocorrelation in the ring width
change data indicated that such factors are
spatially concentrated.
The extremely variable topography and
locations of the sites suggest that purely
spatial models (Cliff and Ord 1981) are
unlikely to be of direct value in this
study. However, the potential exists for
worthwhile applications with more homogeneous
clusters of sites.
Future analyses could include transfer
function models involving climatic
variables, once detailed models of these
variables have been developed.
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APPENDIX

FORTRAN program for computing the spatial
autocorrelation coefficient

(A) Program

DIMENSION Z(lOO), X(100), NPLOT(lOO), NNl(lOO),
NN2(100), *WTl(loo), WT2(100, NCROSS(250)

READ,N
READ, Sol,  S11,  S21, S02, S12, S22
SUMX-0 . 0
DO 10 1-l,N
READ, NP, Nl, N2, NREF
NPLOT (1)sNP
NNl(I)-Nl
NN2(1)-N2
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NCROSS(NP)=NREF
10 CONTINUE

DO 15 1-1,N
RFAD,XA
suMx=suMx+xA
X(I)=XA

15 CONTINUE
SUMZZ-SUMZ4-0.0
SACl=SAC2-0.0
XBAR=SUMX/N
DO 20 I=l,  N
Z(I)=X(I)-XBAR
SUMZZ=SUMZZ+Z(I)**2
SUMZ4=SUMZ4+Z(I)**4

20 CONTINUE
B2=N*SUMZ4/(SUMZZ**2)
PRINT, 'KURTOSIS-',B2
DO 30 J=l,N
KA-NNl(J)
KB=NN2(J)
KC=NPLOT(J)
IF (KA.EQ.0) GO TO 30
JA=NCROSS(KA)
JC=NCROSS(KC)
SACl=SACl+Z(JC)*Z(JA)
IF (KB.EQ.0) GO TO 30
JB=NCROSS(KB)
SAC2=SAC2+Z(JC)*Z(JB)

30 CONTINUE
SACZ=SACl+SAC2
SACl-SACl/SUMZZ
SAC2=SACP/SUMZZ
SD1=N*((N*N-3*N+3)*S11-N*S2l+3*SOl*SOl)
SD1-SDI-B2*((N*N-N)*Sll-2*N*S2l+6*SOl*SOl)
SD1=SD1/((N-1)*(N-2)*(N-3)*SOl*SO1)
SDl-SDl-l.O/(N-1)**2
SDl=SQRT(SDl)
SD2=Nst((N*N-3*N+3)*S12-N*S22+3"S02*So2*so2)
SD2=SD2-B2*((N*N-N)*Sl2-2*N*S22  +6*SO2*SO2)
SD2-SD2/((N-l)*(N-2)*(N-3)*SO2*SO2)
SD2=SD2-l.O/(N-1)**2
SD2=SQRT(SD2)

PRINT,'SDl-',SDl,'SD2=',SD2
PRINT, ' SPATIAL A/C FOR FIRST NN IS ',SACl
PRINT,' SPATIAL A/C FOR SECOND NN IS ',SAC2
SACl-(SACl+l.O/(N-l))/SDl
SAC2-(SACZ+l  O/(N-l))/SD2
PRINT,'STD. DEVIATE FOR FIRST NN IS ',SACl
PRINT,'STD. DEVIATE FOR SECOND NN IS ',SAC2
STOP
END

(B) Plot Number--first nearest neighbor--second
nearest neighbor-- order of plot in listing of
values (required inputs to vectors  NPu)T, NN~,
NN2, AND NCROSS)

32 54 55 29
54 32 55 35
55 54 32 36
7 159 207 6
159 6 7 43
6 159 7 5
207 7 159 44 125 4 0 39
153 6 159 41 4 125 0 4
12 9 25 11
9 25 12 8
25 9 12 23
26 27 25 24
27 26 10 25 46 17 8 34
10 ll 113 9
113 10 ll 38 8 17 46 7
ll 10 113 10 19 18 0 18
21 11 10 20
28 23 ll 26
23 24 28 21
24 23 14 22
14 24 23 13
16 109 14 15
109 16 14 37

(continued)
15 13 37 14
158 0 0 42
13 37 36 12
37 36 13 33
36 37 13 32
132 0 0 40

34 29 33 31
29 33 34 27
33 29 34 30
31 46 8 28

17 8 46 16

18 19 0 17
2 2 0 1 2
20 1 2 19
1 2 0 2 1
3 1 2 0 3



A Fractal  Approach to Amlysis of Tree Ring  Increments

R. A. J. Taylor

SUMMARY

Information from plots established in the Great
Smoky Mountains by the National Park Service and
the Tennessee Valley  Authority was used to
determine annual tree ring widths from core
samples of red spruce (Pitea Rubens Sarg.). The
red spruce core samples showed a significant
dependence of variance  on the mean size of tree
rings at 67 of 68 plots. At 9 of 48 plots, the
variance  has increased more rapidly since 1943;
of the others, 7 have shown a decrease since 1940
and 32 showed no change. The dependence of
variance  on mean of a measurement was interpreted
in terms of "fractals," a term coined to denote
fractional dimension. The change in fractional
dimension over time indicated an evolution of
factors that influenced the dependence of
variance  on mean; these factors may have been
successional, climatic, or anthropogenic, al1  of
which seemed to vary on about the same time
scale. It was concluded that variance-mean
analysis may be an inexpensive and promising area
of inquiry in dendrochronology.

INTRODUCTION

Mortality of large forest areas in severa1
parts of the world has caused  fear that the
concentration of anthropogenic compounds in the
atmosphere may be increasing. Acids and other
oxidízing agents of human  origin, notably ozone,
have been detected  in the atmosphere and are
probably capable of interfering with tree growth
and survival. However, there are no data
concerning the leve1 of atmospheric pollution
(Cook 1987, Kiester and others 1985). Therefore
other possible influentes and causes must be
considered, such as the effect of climate on tree
ring growth. Because  climate and anthropogenic
effects are easily confounded, this report will
focus on the analysis of change and not on
distinguishing between pollution and climate.

Annual  tree rings in temperate regions provide
a convenient  record  of a tree's growth history.
Comparison of tree rings over a geographical area
has frequently been used to determine climatic
changes; it ís assumed that patterns common  to
al1  trees of the same species, similar age,  and
ín the same soils should respond alike to weather
conditions that are basically unvarying (Creber
1977, Guiot and others 1982).

BACKGROUND

It is commonly assumed that the width, W(t), of
a tree ring laíd down ín year t is the linear sum
of four systematic components and a random
component:

R.A.J. Taylor is research scientist in the Depar
State University, Wooster, Ohio.

:tment

W(t) = A(t) + B(t) + C(t) + D(t) + e(t)
where

A(t) = age  factor(s) unique to each tree,
B(t) = disturbances unique to each tree,
C(t) = climatic effects common to al1  trees at

a site,
D(t) = disturbances common to al1  trees at a

site,  and
e(t) = random component.

It may be helpful to review some of the
assumptions frequently made about W(t). The
successive increments are assumed to be
identically distributed. For the benefit of
certain analyses, the increments are further
assumed to be statistically independent, with the
marginal distribution, e(t), Gaussian with zero
mean, and constant  variance. Such a time series
ís called a stationary Gaussian random walk or
Brownian motion. While no one working in
dendrochronology seriously expects the Brownian
assumption to be valid, the nature of statistics
often demands that it be assumed.

The concepts  of randomness are context
dependent, and the word may be used ín a
confusing manner. There are two broad,
alternative definitions of randomness:
"predictable  behavior, efficiently described  by a
statistical probability distribution" and
"haphazard  behavior, governed by no known rules"
(Mandelbrot 1967). In addition, events in which
the mean and variance are equal (Poisson
distributed) are often said to be random.
Predictable behavior is synonymous with
stochastic and differs from deterministic because
its expected or average outcome ís predictable,
while the specific outcome of a tría1 lies within
certain bounds defined by the variance.
As stated above, statistical independence of

successive increments  is a well-known
simplification. The assumption of stationarity,
however, has a special implication that is rarely
questioned: the sample moments vary little from
sample to sample, provided the samples are large
enough. In our analysis, this assumption is
relaxed, and the assumption is made that the
variance  ís infinite or at least so large that it
may be treated as infinite. Thus the assumption
of Gaussian marginal distribution is abandoned in
favor of the Cauchy,  permitting the Central Limit
Theorem to be invoked without assuming constant
variance  (Mandelbrot 1969). Therefore the need
to amend the other assumptions of independence
and stationarity is alleviated (Berger and
Mandelbrot 1963).

The assumption of infinite variance  ís
equivalent to assuming randomness that is
predictable  but haphazard; the long-term  trend ís
evident, but the short-term signa1 is
unpredictable. Theory expounded by Mandelbrot

of Entomology, Ohio
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(1960, 1963, 1969) related haphazard time series
with power laws and distributions with infinite
variance.

THEORJ3TICAL  METHODS

Consider the series x(t), t = 1,2,..., n, of
observations taken at equal intervals of time or
space. Any particular series [x(t)] ís assumed
to be the realization of a process W(t) that will
be defined later; t is used as an indicator
variable at equal intervals of time or space.
Defining the following variables:

V(k) = E[x(t)-x(t+k
:!
l2 - 2[V(x)-C(x;k)],

V(x) = E[x(t)-M(x)]  >
M(x) - ELx(t
C(x;k) = E([x(t)-M(x)][x(t+k)-M(x)]).

V(x) is the variance  of the series with M(x)
the mean. Theory based on the usual
interpretation of the Central Limit Theorem
permits one to assume that these parameters
estimate population values. However, in this
analysis the assumption is not necessarily valid:
the parameters simply represent the sample values
and are therefore not asymptotic to the
population values. C(x;k) is the
spatial/temporal  covariance across the data and
is related to the standard treatments of
time/space series data, including tree ring
analyses (Guiot and others 1982). Information is
given in C(x;k) on the regular variations ín the
data at periods equal to k. The variogram is
V(k) and provides  information on the nonregular
variation at lag k.
Consider V(k) as k varíes: dividing V(k) =

2(V(x)-C(x;k))  through by V(x) gives V(k) =
2V(x)(l-R(k)), where R(k) ís the serial
correlation coefficient that takes values
-l<R(k)<l; therefore V(k)=2rV(x)(l-r},  Olcr52, and
O<V(k)N(x).  Thus:

V(k) = 0 when serial correlation at lag k ís
1,

V(k) = 2V(x)  when no serial correlation at lag
k, and

V(k) = 4V(x) when serial correlation at lag k
is -1.

At any specific value of k, say k*, V(k) will
give information on al1 variations not having a
cycle at k.

To obtain information on al1  variations, V(x)
ís commonly used, but we cannot say what
variation we have at t = i, only that it ís over
the interval t = i,i+l,i+2,..., and so forth.
Ideally, the variance  would be partitioned in the
manner of V(k) but without limitation. If k goes
to zero, al1 scales of variation are included and
simultaneously V(k) disappears. To estímate
V(O) I compute V(k) for k>O and extrapolate back
to zero. To obtain the rate of approach of V(k)
to the origin, plot logV(k) against log(k)  and
determine the gradient, dlogV(k)/dlog(k) = R as
k->O.

Another approach to estímate the gradient of
V(0) is to replicate the generating process W(t):
Q(t), Wz(t),....; V(0) can then be estimated at
any or al1 t. The estimates Vi(O) are al1  at the
origin, so the gradient must be extracted  from
them. Plotting the means and variances of
severa1 series against time shows that the actual

values vary according to no particular pattern;
however, ít must be noted that the magnitude of
Vt(0) seems to increase with time (figs. l-8).
Since Vt(0) is partly dependent on Mt(0),
standardizing Vt(0) with Mt(0) may show a trend.
Figures 1 through 8 also show the coefficient of
variation (./Vt(O)/M,(O))  increaszng  with time.
Figure 9 plots logV(t) against logM(t)  and

shows how the variance  increases with respect to
mean. The gradient dlogV/dlogM  = b is an
estimate of R. This is easily demonstrated by
the following argument. Define a referente  mean
MO and a comparison mean MS = sM0
= sMOb and VS = aMsb = a(sMO)b =

(s>l
sb(amOk

Now Vo
) = sbVO.

Evidently the variance  ís scale independent, and
its gradient b is an intrinsic component, as
expected from dlogV(k)/dlog(k).

Taking logs: logV, = logV0 + blog(s), remember
that VO is a variance corresponding to an
arbitrarily chosen  mean MO. VO is thus also
arbitrary; MO can be chosen  such that VO ís 1.
Thus logV, - blog(s), which ís very nearly
logV(k) = Rlog(k). Although k and s are not quite
synonymous, if multiples are chosen  as values of
s, then 1ogV = blog(i) + C describes the locus of
variance  at spatial/temporal intervals i =
1,2,..., and is, except for C, identical to
logV(k) = RlogK.  Therefore R = b.
The same result can be obtained from an

empirical argument. Let there be a series of
samples taken along a transect AR. Divide AR
into NK intervals such that there are N groups of
K intervals. Neither the K groups nor the N
groups need to be contiguous, but for simplicity
ít is assumed that they are. The number of
entities ín each of the NK intervals is counted.
In the present case, the size of the tree ring
increment  is measured: Xij  where x is the size
and i = 1,2,...,N  and j = 1,2,...,K. Now compute
the mean Mi and variance  Vi for each of the i =
1,2,... ,N groups from

Mi = Bij/K Vi = C(Xij-Mi)2/(K-1).
Let the central interval of each group become

the center of mass for that group. The center of
mass has at least two parameters describing the
distribution of observations within the group:
Mi and Vi.
If 1ogV is plotted against logM,  empirically

they are related by the power law, V = sMb,  where
a and b are empirically estimable parameters
(Taylor 1961, Per;y 1981). Consider the
arbitrary series xj
mean and variance  M*

(j = 1,2,...,K) that has
and V";

serial*covariance  C*(k$ havin
now compute the

g lag*k,  from
C*(k)  - EJx~* - M ][Xj+k - M 1.

From V and C ( ) the variance  of increments is
com uted:gV (k) - E(Xi* - Xi+k*)2 = 2[V* - C*(k)].
Half V*(k) is refir;ed  to as the variogram, and

its computation is the first step in the
interpolation process known as kriging (Journel
and Huijbregts 1978). The covariance term ís
C*(k) and is related to the systematic part of
the ring increments, particularly growth at small
k. At larger k, long-period variations such as
climatic cycles predominate. Filtering
techniques (Guiot and others 1982) concentrate on
the structure  of C*(k) over varying periods of
time. The total variance  of the series V"
contains both the systematic and nonsystematic
variance.
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MEAN ANNUAL TREE-RING WIDTH - S ITE 1 (1850 - 1984)
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Figure l.--Time series of mean, variance, and coefficient of variation of
tree-ring increments  from 1850 to 1984 at Tennessee Valley
Authority site 1.



MEAN ANNUAL TREE-RING WIDTH - SITE  9 (1850 - 1984)
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Figure 2.--Time series of mean, variance, and coefficient of variation of
tree-ring increments  from 1850 to 1984 at Tennessee Valley
Authority site 9.



MEAN ANNUAL TREE-RING WIDTH - S ITE 23 (1850 - 1984)
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Figure 3.--Time series of mean, varíance, azd coefficient of variation of
tree-ring increments  from 1850 to 1984 at Tennessee Valley
Authority site 23.
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MEAN ANNUAL TREE-RING WIDTH - S ITE 36 (1850 - 1984)
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Figure Li.--Time  series of mean, variance, and coefficient of variation of
tree-ring increments  from 1850 to 1984 at Tennessee Valley
Authority site 36.
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MEAN ANNUAL TREE-RING WIDTH - SITE  307 (1901 - 1984)
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Figure 5. --Time series of mean, variance, and coefficient of variation of
tree-ring increments  from '850 to 1984 at National Park Service
site 307.
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MEAN ANNUAL TREE-RING WIDTH - SITE  310 (1901 - 1984)
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Figure á.--Time  series of mean, variance, and coefficient of variation of
tree-ring increments  from 1850 to 1984 at National Park Service
site 310.
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MEAN ANNUAL TREE-RING WIDTH - SITE  316 (1901 - 1984)
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Figure 7.--Time series of mean, variance, and coefficient of variation of
tree-ring increments  from 1850 to 1984 at National Park Service
site 316.
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MEAN ANNUAL TREE-RING WIDTH - S ITE 321 (1901 - 1984)
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Figure 8.--Time  series of mean, variance, and coefficient of variation of
tree-ring increments  from 1850 to 1984 at National Park Service
site 321.



This study focuses primarily on the systematic
variance common to al1 trees at a site.
Therefore the variance  across al1 cores at a site
in each year was calculated to form the series
"t. The common systematic components at a site
formed  a baseline from which al1 other components
of variance  were referenced. To find the common
systematic component, variance was plotted
against mean to standardize variance. The mean
was assumed to be linearly related to the
baseline.

Also to be noted is the change in the common
component, represented by the change in Vt
relative to Mt. Changes between the relationship
of Vt and Mt indicate changes in the normal
behavior of the process W(t). Changes result
from evolution in the process variance. If a
long-term change ís anticipated, then evolution
in the system process can be demonstrated by
determining differences in the rates of change of
variance  before  and after the referente  point.

PROCEDUNE

Of the plots established by the National Park
Service (NPS) and the Tennessee Valley  Authority
WA), only those with five or more red spruce
trees in the sample were selected for analysis.
With 2 cores (series) per tree, means and
variances for each year from the beginning of the
series were computed from 10 ring width
estimates. Series ranged in length from 40 to
135 years. These data yielded 20 bivariate
series with length of approximately 84 years (NPS
data), and 48 series with lengths varying from 40
to 135 years (TVA data). The logarithm of
variance  was then regressed on log mean with each
point representing 1 year.

RESULTS

Figures 1 through 8 show the mean (M), variance
("> > and coefficient of variation (CV) against
time at TVA sites 1, 9, 23, and 36 and NPS sites
307, 310, 316, and 321. Both the mean and
variance  were highly variable, and the plots of
CV against time gave the strong impression that
the variance was increasing with time.
Furthermore, the detailed behavior differed
greatly from site to-site. Figures 9 through 16
show variance-mean regression plots for the same
8 sites, and table 1 shows the results of
regressions of 68 sites. Sixty-seven  regressions
were significant  at probabilities of less than
0.05. Only site 113 showed no dependence of
variance  on mean.

To investigate the possibility that conditions
in the post-World War II era were different from
prewar conditions, the data of sites with runs
longer than 80 years were split at 1943 and the
variance-mean regressions repeated to test the
hypothesis that the acceleration of variance  with
mean has changed. Table 2 shows that of the 28
TVA data sets suitable for analysis, 8 showed
increases in dependence, 18 showed no change,  and
none showed a decrease  in dependence. There were
two sites with a nonsignificant regression.
Interestingly, the NPS data showed the reverse
pattern: only one site showed a significant
increase  in variance-mean dependence since 1943,

nine sites showed no difference and seven showed
a significant  decrease  since 1943, three sites
had a nonsignificant regression.

Preliminary analyses with multivariate methods
(principal components analysis, PCA) failed to
identify any differences in regression gradient
attributable to differences in the two data sets.
Variables included in the PCA were annual
rainfall, mean annual maximum and minimum
temperatures, xeric/mesic  status, altitude, and
stand basal area.

DISCUSSION

Tree rings reflect the net effect of age,
health, soil, and biotic conditions on tree
growth.

Age and health are unique aspects of each
individual tree, but the environmental
conditions experienced by al1 trees in close
proximity are considered similar or common
externa1 factors. However, competition is one
aspect of a tree's externa1 environment that ís
considered  unique.
Therefore three influentes  of growth can be

established:
1. Age/growth---unique interna1 factors,
2. Competition--- unique externa1 factors, and
3. Environment---common externa1 factors.
When samples are composed  of mature and/or old

trees, the age-dependent variance will be
relatively small and may even be missing in the
younger trees. When very young and very old
trees are included in the sample, age/growth is
likely to have an impact only in the early part
of a series and variances 'are higher than normal.
Competition between trees in the sample may

help one to understand the dependence of variance
on mean. For a g'iven value of the mean, a high
variance  indicates  a wider,  range of individual
responses. As the mean increases, the dependence
of variance  on the mean suggests that only some
elements of a sample are increasing, while others
may be decreasing or increasing very little. If
increases  in tree ring width were al1 equal at a
site, the variance would be increasing
proportionately and b = 1. The mean value of b
was 1.77, suggesting that at the majority of
sites, when conditions were conducive to growth
increases, only some trees responded. A change
in b over time was interpreted as a change in the
relative competitiveness of the trees at a site
due to a change in the externa1 conditions.

CONCLUSIONS

Because the relationship between variance  and
mean is still uncertain, no definite conclusions
can be made about the influentes  on tree growth.
Because  the nature of fractional dimension is
still poorly understood, the theoretical
treatment is not rigorous. Only since the
publication of Mandelbrot's book (1982) has there
been  an increased awareness and interest in
fractals among scientists other than topologists.
The ideas developed in this analysis were

preliminary, but the reduction of the masses of
tree core data to a single parameter, b, was a
new contribution to statistical methods in
dendrochronology. However, the results of
splitting the data into two sections were

50



SITE I SITE 9

4.50

4 2 5

4.00

315

íz
350

r 3 2 5

z

zJ”>”

zE: 2.75

2 .50

2 .25

Zn0

1.75

MO

/  0 0 0 02 0 0

/oo0  0
0 0

0 0

0
0

0 0

co

OO
0

> I , I , c
1.2 1.4 1.6 1.6 2 0 2 .2 ZA 2.6

LOG (MEAN)

_t”, , ,:, , , , , ,
1.6 17 l.6 1.9 20 2.1 22 2.3 ZA 2.5

LOG (MEAN)

Figure 9. --Varíance-mean plot (log scale) of
Tennessee Valley  Authority site 1.
Al1 regressions are significant  at
p<O.Ol. This plot shows some
nonlínearity.

Figure 10. --Varíance-mean plot (log scale) of
Tennessee Valley  Authority síte 9.
Al.2  regressions are sígnífícant at
p<O.Ol. This plot shows very good
regressíon.

SITE 36
SITE 23

800

4.75

4.50

4 2 5

4.00
CI

% 3 . 7 5

T
z 3 . 5 0

5
; 3 . 2 5

4:
3m

2.75

2 5 0

2 2 5

0

0
0

0

0 0

OO OO
0

0 0

0

0

o/
4 2 5

0 0

0”
0

0 :
OO OO 0

0 Cr ,”
0

/

OO 0
0 OC0 0

0 * &
aO0

0
:

c o 0

0

OO  “0

*öco
0

OO0 OO

P OO
o(D 0 0 OO

0 0 0
0 0 000

I:/ 0 0 0 0 0

0

0

0 0 0
0 0 0

0
OO öo

OC0

0

0

0 0
0

0

-/
0

2.50

2 2 5

I

0

200

t

0 0

0

I O
2.oot; m I I , I I 1 1.75j-, 1 t I t t L

1.7 1.6 1.9 2 .0 21 2 . 2 2 3 2.4 2 5 2.6 la 19 2.0 2.1 2 . 2 2 .3 2 4 0.5

LOG (MEAN) LOG (MEAN)

Figure ll. --Variance-mean plot (log scale) of Figure 12.--Variance-mean  plot (log  scale) of
Tennessee Valley  Authority síte 23. Tennessee Valley Authority síte 36.
Al1 regressions are sígnífícant at Al1 regressíons are signífícant at
p<O.Ol. This plot shows very good pCo.01. Thís plot shows very good
regression. regressíon. 5 1



SITE 307 SITE 310

4.0 -

3Q -

3.e
0

- 0

3 . 7 0-

3.6 0i-

35 -

3A -

33-

32 -

0

0

3.1 -

3.Q- OO
0

2.9 -

2.6 -/

”0c o 0OO

2.6 - 0

2.7 -

, 1 I 1
1.55 1.65  1.75 IB5 LQ5 70s 2.15 225

LOC (MEAN)

Figure 13.--Varíance-mean  plots (log scale) of
National Park Service site 307. Al1
regressíons are signífícant at p<O.Ol.
This plot shows very good regression.

SITE 316

OO

0

I[, , , , , , , ,
1.45 1.55 Iâs 1.75 1.65 1.09  2.0s 2 . 1 5

LOC (MEAN1

Figure 15 .--Varíance-mean plots (log-scale) of Figure 16.--Variance-mean  plots (log scale)  of
Natíonal Park Servíce site 316. Al1 Natíonal Park Servíce síte 321. Al1
regressíons are significant  at wO.01. regressíons are sígníficant at p<O.Ol.
This plot shows some nonlinearíty. This plot shows very good regression.

LOG (MEAN)

Figure

4.1 c

4.0 -

3.9 -

3.e -
35 -

3.6 -

s
z

35-

< a4-
z2 3.3-

-
0

ã2-

2 3.1 -
3.0-

2.9 -

2.6 -

2.7 -

2.6 -

14.--Varíance-mean  plots (log scale) of
National Park Service site 310. Al1
regressíons are sígnifícant at p<O.Ol.
This plot shows very good regressíon.

SITE 321

2.5/, I I I
1.5 1.6 1.7 1.8 1.9 20 2.1 2.2

LOG (MEAN)

52



inconclusive. A reduction in variance  in recent
years at each TVA site may be indicated by the
TVA data, while the NPS sites have become  more
variable. If this is so, the difference between
the two data sets must be determined. The
results of the PCA were also inconclusive, but
the set of site characteristics used in the

The fractal approach to the analysis of tree
ring widths is a promising area for further
research. However, this method may not help to
identify anthropogenic influentes  on tree growth;
change may be determined, but the cause of thet
change may still require carefully controlled,
long-term, large-scale  forest expwiments.

analysis was very small.

Table 1. --Regression analyses of the log (variance) against log (mean) of
tree ring increments+

Site Standard Adjusted F-
No. N W(a) b error of b R* ratio Significance

Tennessee Valley  Authority Plots

1 135 1.38 1.05 0.126 0.34 68.8
2 71 -0.72 1.84 0.346 0.28 28.2
3 aa 1.50 0.96 0.159 0.29 36.1
4 92 -1.98 2.55 0.194 0.65 172.0
5 35 -1.04 1.90 0.587 0.22 10.4
6 96 1.83 0.77 0.319 0.05 5.9
7 loa 0.41 1.55 0.145 0.51 114.0
8 57 -1.02 2.05 0.223 0.60 85.1
9 135 -0.32 1.85 0.122 0.63 230.0

10 135 1.18 1.06 0.204 0.16 26.8
11 45 1.56 0.94 0.246 0.23 14.5
12 125 0.10 1.64 0.176 0.41 86.6
13 45 -3.22 3.08 0.549 0.41 31.4
14 43 0.92 1.28 0.239 0.40 28.6
15 57 2.02 0.74 0.206 0.18 12.9
16 64 0.90 1.19 0.147 0.51 66.1
17 80 0.21 1.57 0.144 0.60 118.0
la 65 -2.05 2.63 0.151 0.83 304.0
19 128 -0.50 1.81 0.107 0.69 283.0
20 115 0.16 1.52 0.131 0.54 135.0
21 26 -2.81 2.71 0.971 0.21 7.8
22 100 1.91 0.80 0.148 0.22 29.1
23 135 -1.06 2.13 0.118 0.71 323.0
24 106 -1.94 2.52 0.124 0.80 414.0
25 135 0.51 1.42 0.161 0.36 77.3
26 115 1.23 1.06 0.163 0.27 42.2
27 135 0.77 1.31 0.206 0.23 40.1
28 132 0.65 1.28 0.266 0.14 23.1
29 95 -0.34 1.93 0.199 0.50 94.2
30 25 -3.47 3.10 0.809 0.36 14.7
31 61 -0.02 1.56 0.195 0.51 64.0
32 54 3.00 0.36 0.172 0.06 4.5
33 47 0.40 1.57 0.263 0.43 35.6
34 125 1.92 0.71 0.081 0.38 77.7
35 34 1.98 0.83 0.401 0.09 4.3
36 135 -4.28 3.68 0.249 0.62 218.0
37 134 1.29 0.96 0.100 0.41 93.2
46 135 -0.22 1.86 0.091 0.75 413.0
54 135 -2.46 2.74 0.290 0.40 89.6
55 85 -0.97 2.17 0.228 0.52 90.4
109 53 -0.87 1.91 0.218 0.59 76.3
113 46 2.73 0.49 0.394 0.01 1.5

Tennessee Valley.  Authority Plots

125 40 1.10 0.96 0.272 0.23 12.5
132 90 0.73 1.30 0.137 0.50 90.3
153 100 0.25 1.58 0.113 0.66 195.0
158 87 1.13 1.14 0.074 0.73 236.0
159 50 -6.99 4.37 0.751 0.40 33.8
207 48 -2.47 2.62 0.311 0.60 70.7

**
*

***

***

**

***

*

*

WS

***
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Table l.--Regression  analyses of the log (variance) against log (mean) of
tree ring increments--Continued.

Site Standard Adjusted F-
No. N Log(a) b error of b R2 ratio Significance

National Parks Service Plots

301 84 -1.50 2.60 0.187 0.70 193.0
302 84 -0.88 2.05 0.205 0.54 100.0
303 84 -1.57 2.58 0.201 0.66 164.0
304 84 2.04 0.75 0.237 0.10 10.1
305 84 0.04 1.63 0.111 0.72 214.0
307 84 -0.20 1.88 0.121 0.74 242.0
308 84 -1.75 2.62 0.352 0.40 55.4
309 84 -2.46 2.88 0.332 0.47 75.1
310 84 -1.25 2.38 0.150 0.75 253.0
311 84 0.05 1.66 0.164 0.55 103.0
312 84 0.72 1.36 0.154 0.48 78.4
313 83 0.16 1.54 0.501 0.09 9.5
314 83 1.12 1.11 0.284 0.15 15.4
315 84 -1.90 2.54 0.207 0.64 152.0
316 84 1.63 0.73 0.244 0.10 0.9
317 84 -0.13 1.72 0.169 0.55 104.0
318 84 -1.23 2.36 0.250 0.52 89.1
319 84 -1.82 2.51 0.217 0.61 133.0
320 84 -0.60 2.11 0.142 0.73 221.0
321 84 -0.62 2.00 0.123 0.76 263.0

**

**
***

**

+ Al1 regressions are significant at P <O.OOOl, except where indicated:
N/S = not significant, * = P <0.05,  ** = P <O.Ol, *** = P <O.OOl.

Table 2.--Regression  analyses of the log(variance) against log(mean) of tree
ring increments  before and after 1943+

-
Site Pre/ Standard Adjust F-
No. post N Log(a) b error of (b) R2 ratio Signif.

Tennessee Valley  Authority Plots

1 0 93 1.04 1.26 0.158 0.40 63.2
1 42 -0.43 1.77 0.546 0.19 10.6 **

3 0 46 2.32 0.60 0.274 0.08 4.8 *
1 42 0.38 1.47 0.187 0.60 62.1

4 0 50 -0.65 1.97 0.341 0.40 33.4
1 42 -2.28 2.73 0.190 0.83 206.0

6 0 54 3.48 0.12 0.300 0 0.2 N/S
1 42 0 1.51 0.535 0.14 8.0 **

7 0 66 -0.65 2.05 0.220 0.68 86.5
1 42 -0.65 2.05 0.220 0.68 86.5

9 0 93 -0.23 1.79 0.147 0.61 147.0
1 42 -0.54 2.00 0.202 0.70 97.6

10 0 93 0.36 1.44 0.213 0.33 45.7
1 42 4.35 0 0 0 1.0 N/S

12 0 83 0.44 1.49 0.184 0.44 66.2
1 42 -0.82 2.04 0.508 0.27 16.1 ***

17 0 38 -0.91 2.02 0.560 0.24 13.0 ***
1 42 -1.03 2.18 0.226 0.69 93.0

19 0 86 0.08 1.54 0.160 0.52 92.0
1 42 -0.90 2.02 0.225 0.48 38.7

20 0 73 0.14 1.54 0.171 0.52 79.6
1 42 0.78 1.26 0.252 0.37 25.0

22 0 58 1.69 0.87 0.302 0.11 8.4 **
1 42 0.87 1.28 0.247 0.39 27.1

23 0 93 -0.96 2.07 0.178 0.59 134.0
1 42 -0.91 2.07 0.292 0.66 80.4
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Table 2.--Regression  analyses of the log(variance) against log(mean) of tree
ring increments  before and after 1943+--Continued

Site Pre/ Standard Adjust F-
No. post N %(a) b error of (b) R2 ratio Signif.

24 0 64 -1.81 2.46
1 42 -2.25 2.66

25 0 93 0.48 1.42
1 42 0.79 1.30

26 0 73 1.76 0.84
1 42 0.84 1.23

27 0 93 1.05 1.16
1 42 -0.23 1.83

28 0 90 1.59 0.84
1 42 -2.68 2.91

29 0 53 -0.41 1.85
1 42 -2.21 3.04

34 0 83 1.24 1.10
1 42 -0.67 1.77

36 0 93 -3.31 3.17
1 42 -4.67 3.95

37 0 92 -1.68 0.79

Tennessee Valley  Authority Plots

1 42 -1.19 2.22
46 0 93 -0.09 1.79

1 42 -1.64 2.48
54 0 93 -0.66 1.94

1 42 -2.66 2.80
55 0 43 -2.37 2.71

1 42 -4.09 3.57
132 0 48 1.08 1.25

1 42 -0.57 1.85
153 0 59 2.28 0.49

1 42 1.32 1.14
158 0 45 1.48 0.93

1 42 -2.95 2.89

National Park Service Plots

301 0 42 -1.50 2.57 0.421 0.47 37.2
1 42 -1.96 2.86 0.152 0.90 353.0

302 0 42 -2.77 2.86 0.404 0.54 50.1
1 42 -1.46 2.40 0.193 0.79 153.0

303 0 42 -1.40 2.44 0.236 0.72 108.0
1 42 -1.50 2.59 0.211 0.78 150.0

304 0 42 -0.92 2.11 0.439 0.35 23.1
1 42 2.58 0.51 0.261 0.07 3.9 *

305 0 42 -0.78 2.04 0.239 0.64 73.0
1 42 0.29 1.49 0.159 0.68 87.2

307 0 42 -1.73 2.61 0.109 0.93 571.0
1 42 0.27 1.65 0.194 0.63 72.3

308 0 42 -1.79 2.58 0.441 0.45 31.2
1 42 -2.49 3.06 0.504 0.47 36.9

309 0 42 -3.51 3.34 0.558 0.46 35.8
1 42 -1.19 3.31 0.272 0.63 72.1

310 0 42 -0.41 1.92 0.158 0.78 148.0
1 42 -2.02 2.77 0.372 0.57 55.5

311 0 42 -2.43 2.70 0.224 0.78 145.0
1 42 -0.18 1.83 0.166 0.75 122.0

312 0 42 2.40 0.59 0.261 0.09 5.1 *
1 42' 1.63 0.84 0.237 0.22 12.5 **

313 0 41 -3.64 3.16 0.448 0.53 49.7
1 42 5.19 0.63 0.585 0 1.2 N/S

314 0 41 0.30 1.46 0.333 0.31 19.1

0.158 0.79 242.0
0.330 0.61 64.6
0.215 0.32 41.6
0.204 0.49 40.7
0.188 0.20 19.5
0.375 0.19 10.8 **
0.350 0.10 11.1 **
0.258 0.55 50.2
0.382 0.04 4.9 *
0.443 0.51 43.1
0.109 0.64 95.3
0.147 0.91 425.0
0.096 0.62 132.0
0.499 0.22 12.6 ***
0.370 0.44 73.4
0.181 0.92 477.0
0.139 0.25 32.1

0.253 0.65 76.5
0.110 0.74 267.0
0.339 0.56 53.3
0.471 0.15 16.9
0.511 0.42 30.1
0.270 0.70 101.0
0.572 0.48 38.9
0.216 0.36 27.4
0.454 0.28 16.7 ***
0.231 0.06 4.4 *
0.286 0.27 15.9 ***
0.108 0.62 74.0
0.370 0.59 60.9



Table 2.--Regression  analyses of the log(variance) against log(mean) of tree
ring increments  before and after 1943+--Continued

Site Pre/ Standard Adjust F-
No. post N W(a) b error of (b) R2 ratio Signif.

National Parks Service Plots

1 42 2.35 0.57 0.357 0.04 2.6 N/S
315 0 42 -4.42 3.34 0.341 0.72 108.0

1 42 -1.14 2.22 0.207 0.74 115.0
316 0 42 4.28 0.51 0.673 0 0.6 N/S

1 42 0.95 1.14 0.249 0.33 21.1
317 0 42 -0.18 1.73 0.225 0.59 59.5

1 42 -0.39 1.87 0.281 0.52 44.6
318 0 42 -0.60 1.98 0.330 0.46 35.8

1 42 -0.09 1.90 0.209 0.67 33.1
319 0 42 -2.14 2.69 0.265 0.71 103.0

1 42 -2.99 2.99 0.380 0.60 62.1
320 0 42 -1.62 2.61 0.181 0.83 208.0

1 42 0.86 1.40 0.183 0.59 59.1
321 0 42 -0.95 2.17 0.173 0.79 158.0

1 42 0.12 1.60 0.191 0.63 70.1

+All regressions are significant at P <O.OOOl, except where indicated:
N/S = not significant, * = P <0.05, ** = P <O.Ol,  *** - P <O.OOl
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Red Spruce Tree Ring Analysis Using a Kalman Filter

Paul C. Van Deusen

SUHEIARY

A Kalman filter was applied to red spruce
(Pitea rubens Sarg.) tree ring data collected- -
from the Great Smoky Mountains by the Tennessee
Valley  Authority and the National Park Service.
A new standardization method was developed that
can be justified with a model-based assumption.
The variance  o f the standardized growth
chronology appears to have increased in recent
years. The sensitivity of red spruce to climate
began to increase in the late 1960's and leveled
off in the early 1980's. It is possible that
increasing climatic  sensitivity and variance  are
related to balsam wooly adelgid activity in these
stands.

IIwRoDucTIm

Tree ring data provide one of the few
historical  records for scientists to assess the
impact of atmospheric deposition influentes  on
forests (ADIF). However, to adequately assess
this impact, historical  information on weather
and pollution levels are also needed. Although
past weather records are available from weather
stations, deposition levels can only be inferred
from proxy variables such as coa1 consumption of
nearby power plants. My analysis will be limited
to examining the trends in the tree ring series
and attempting to explain these trends with
average monthly temperature and total
precipitation records. The Kalman filter is
shown to be a useful tool for this type of
analysis.

DATA

The National Park Service (NPS) and the
Tennessee Valley  Authority (TVA)  had collected
data from plots located in the Great Smoky
Mountains. Spatial relationships, current
díameter, and species were recorded  for each tree
on each plot. A few dominant trees were selected
at each NPS plot from which two increment  cores
were taken, but pith date was not recorded; tree
rings were dated back to 1900. Dominant trees on
'IVA  plots were not cored, but pith date was
recorded; unfortunately tree ring widths were
only available back  to 1850. Information from
approximately 200 red spruce trees were available
in both data sets. A data set from a site on
Clingman's Dome (North Carolina) consisting of 38
cores on 19 trees was also utilized in this
study. Ed Cook of the Lamont-Doherty Tree Ring
Laboratory collected and cross-dated this data
set. The 'IVA  and NPS tree ring data were
processed at Oak Ridge National Laboratories.

Generally, only data that would be conunonly
available ín a dendrochronological study were
used; these data included ring width, elevation,

pith date, and regional weather data. National
Weather Service Climatic Division data from
stations in the northern mountains of North
Carolina were summarized to provide total
rainfall and average temperature by month
beginning in 1931.

STARDARDIZATION

A basic goal of many tree ring studies is to
produce a common  chronology from a group of trees
to be representative of a site. It is probable
that this chronology will demonstrate a common
signa1 to which al1 trees in the area have
responded. In order to amplify the compon
signal, an attempt is made to eliminate
individual tree signals that are unrelated to the
common  signal. The age-related  biological growth
signa1 can be removed by a number of procedures
categorically referred to as standardization.
Graybill (1982) presents methods where a growth
model is individually fit to each tree ring
series.
Graybill (1982) presents a hypothetical

breakdown of the raw ring width for a single tree
at time t, R(t), as follows:

R(t)  = C, + Bt + Dl, + D2, + et, (1)

where Ct is the macroclimatic signa1 common  to
al1 trees;

Bt is the biological growth trend - a
function of tree age;

Dlt ís a disturbance signa1 that is unique
to the individual;

D2t is a disturbance signa1 common  to most
or al1 individuals--possibly  caused  by
fire, insects,  or pollution; and

et accounts for random disturbance.

In order to maximize the macrosignals (C and
D2), it is necessary to recognize and remove the
microsignals (B‘and Dl) as much as possible (Cook
1987). An index is formed as followes:

Index(t) = R(t)/Y(t), (2)

where Y(t) is the model-based prediction of R(t).
This produces a new index series with.  an
expectation of 1, a more homogeneous variance,
and a smaller first order autocorrelation than
the original series (Fritts 1976). Graybill
(1982) presents negative exponentials and
orthogonal polynomials as potential prediction
models.
Cook (1987) discusses  the use of splines to

replace Graybill's models. There is a
possibility that the disturbance signa1 (Dl)  as
well as the B-signa1  may be removed with the
spline approach, and more user interaction and
expert opinion are required. Warren (1980)

Paul Van Deusen  is a mathematical statistician with the Southern Forest
Experiment Station, Forest Service-USDA, New Orleans, Louisiana 70113.
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KAINANFILTNRpresents  an alternate model-based  approach that
could also be used to remove the Dl signal, but
it also requires much user interaction.

A NEW STANDARDIZATION PROCKDURK

A method was sought for this study that
required little subjectivity and could be used to
automatically process many hundreds of cores.
The method begins with a standard sigmoidal model
for diameter at some age,  D(A):

D(A) = b(1 - epkA)  ,

where b is the asymptote parameter, and
k ís the shape parameter.
Differentiating model (3) with respect to age
gives a diameter growth model:

(4)

= 2 R(A) .

Model (4) ís appropriate for radial increment
data and is similar to standard
dendrochronological methods.

Assuming model (4), two steps are required to
remove the age-related trend from the data.
First take the natural log of model (4), giving:

log[R(A)] = constant  -kA . (5)

Then take the first differences of model (5),
giving:

log[R(A)] - log [R(A-l)]  - -k (6)
= Alog[R(t)] .

Thus a simple transformation removes the age-
related trend from the tree ring series. Result
(6) can be justified intuitively by viewing ít as
a relative growth rate. Taking the log of R(t)
puts it on a relative scale,  and the first
difference is just a numerical first derivative
that can be viewed as a growth rate. This
transformation can be quickly performed without
sophisticated software or user interaction, an
important advantage for large data sets.
Plotting the data before and after

transformation indicated that the new series was
stationary and that the age-related trend had
been removed as expected (fig. 1). Figures 1 and
2 show how the transformation creates similar
series from a young tree and an old tree that
looked quite different before transformation.
Notice that 1937, 1969, and 1981 are al1  low on
the transformed series.

The analysis can then proceed  on the
transformed data by assuming that the new series
is composed  of the following signals:

Alog[R(t)] = Ct + Dlt + D2t + et, (7)

where Ct, Dlt, D2t, and et are defined as in
model (1).
The age-related signa1 is now removed. Two
macrosignal terms that are of interest remain (C
and D2), as well as two uninteresting microsignal
terms (Dl and e) that will be treated as noise.

A system for updating and predicting is
presented by Kalmar! (1960) based on a linear
dynamic model. These models are generalizations
that can generate  any of the class of ARMA models
(Box and Jenkins 1976), standard multiple
regression models, and regression models with
time varying parameters (Harvey 1981). Applied
to dendrochronology, the Kalman filter provides a
means of simultaneously reducing a number of
series to a single chronology and generating
climate-based predictions. Furthermore, the
climate parameters can be allowed to vary over
time to provide  a test of the uniformitarian
principie  that conditions in the past are similar
to the present. The uniformitarian principie  is
the fundamental justification for the use of
dendrochronology to infer past conditions.

The Kalman filter can be derived from Bayesian
theory (Harrison and Stevens 1976; Meinhold and
Singpurwalla 1983) or with least squares methods
presented by Duncan and Horn (1972). The
equations needed to implement the Kalman filter
are presented below, and the reader is referred
to the citations for the theòretical development.

The basic difference between the Kalman  filter
and usual regression models ís that the
parameters are allowed to vary over time. The
relationship between the vector of observed
standardized ring widths at time t (Yt) and the
parameters (at)  is called  the observation or
measurement equation:

Yt = Ftat + vt,

where the matrix Ft is fixed and of order ntxp,
at ís a Pxl vector of underlying state
parameters, and vt is an ntxl vector of residuals
with zero expectation and variance  matrix Vt.

The state variable, at, evolves over time
according to a first order Markov process as
defined by the transition or system equation:

“t - Gtat-1  + wt  >
where Gt is a fixed pxp matrix, and wt is a pxl
vector of residuals with zero expectation and
yariance matrix Wt.
The error terms vt and wt are assumed to be

independent white noise series. The quantities
that must be known  include the matrices (Ft and
Gt) that premultiply the state variables (at and
at-1). The matrices Ft and Gt correspond  to
independent variables in regression theory, or,
when dealing with rocket trajectories, they come
frirm well-defined physical laws. The more
comnlex problem comes from the need to know the
variance  matrices (W, and V,),  because  in many
statistical applications this will require some
user subjectivity.

The equations needed to estimate the state
variables can be divided into three parts:
prediction equations, updating equations, and
smoothing equations. Let at-1 denote the optima1
estimator of at-1 based on al1 information up to
and including Yt-1. The covariance matrix of
at-1 - at-1 will be Pt-l. The prediction
equations for at and the associated covariance
matrix given at-1 and Pt-l are:

58



1915 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0 . 8 9

0 . 6 7

- 0 . 6 7

- 0 . 8 9

Y E A R

I I I I I I I I I I

1915 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5

Y E A R

Figure l.--Ring  widths of a relatively young red spruce in raw (upper graph)
and standardized (lower graph) form for a young tree. First
differences of the natural log were used to produce the lower
standardized series.

at/t-i = Gtat-l
:
and (3a)

Pt/,-1 = GtPt-lGt  + Wt . (3b)

When Yt becomes available, the updating
equations for the estímate of ut and the
associated covariance matrix are:

= at/t-1
i," = Pt/,-1

+ Pt,t-lFt'Zt-lFt,  and

where
- Pt/t-1Ft'Zt‘'FtPt/t-1  >

(4a)
(4b)

Z
Et = Yt - Ftat/t-1,
t = FtPt-t-lFt' + Vt , and, for computational

savings,
q-1 = vt-l - Vt-lF  [Ft'Vt-lF,

+ Pt,t-l-l]-~Ft'Vt-l.

The estimate  of at in (4a) is the sum of its

estimate at time t-l and a weighted average of
the prediction errors (Et).

At any time, at is an optima1 estimate, given
al1 previous information, but only the estímate
at time T (the final period) contains al1 of the
information available. Given al1 information,
the optima1 solution for any time t is referred
to as signa1 extraction or smoothing.
begins

Smoothing
with the solutions at time T and

recursively goes backwards to time 1. This
yields the optima1 smoothed estimates of the
state variables with associated covariance
matrices as follows:

at/T = at + Pt*(at+l/T  - Gt+lat), and
Pt/T = Pt + Pt*(Pt+l/T  - Pt+l/t)Pt*' I

(5a)
(Sb)
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Figure 2.--Ring  widths of m older red spruce in raw (upper graph) and
standardized (lower graph) &XUJ for an old tree. First
differences of the natural log were used to produce the lower
standardized series.

where
aT/T = ,aT for the starting value on the

state variables,
PT/T = PT for the covariance starting

values and
Pt* * Pt%+1 Pt+l/t -1

APPLXINGTHEKAMAN FILTERINDEt?DROCHRONOUIGY

The Kalman filter provides  a complete system
for prediction, updating, and smoothing that
should appeal to the dendrochronologist. In
particular, the usual procedure of climate
prediction from a single chronology formed from
many standardized tree ring series could be
refined. Two applications of the Kalman filter
will be presented. The first shows how a

chronology can be formed simultaneously with its
climate predictor, and the second is an
application to dendroclimatology. For an
additional application, readers should see  Jones
(1980) where various models are fit to drought
data reconstructed from tree rings.

Application 1

The Kalman filter was applied to the red spruce
data collected  by the NPS and TVA. The objective
was to simultaneously form a single chronology
and its climate-based prediction. The data were
first standardized by taking the first difference
of the logarithms. The following Kalman filter
was then applied:
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Observation equation Yt = Ft ff1tLI 1a2t
+ vt (64

Transition equation alt = Q~2,~-1 + wlt (6b)
o2t = o2,t-1 + w2t (6~)

where
Yt is the ntxl vector of observed tree ring
data at time t,
F, ís a matrix with two columns of length
nt with the first column being 1's  and
the second O's,
vt* w1tp and ~2~ are random errors,
Ct is the climate variable,
olt is the value of the chronology at time
t, and
a2t is the climate effect at time t.

The covariance matrix Vt was defined to be
(r tIt  where c2t was estimated from vector Yt as2
X(Yit -W/[nt-ll, and It was an identity matrix
of order nt. In other words, the trees were
treated a priori as independent. The covariance
matrix Wt was defined as

wt = ozt [ y’ .olyl]
Thus the state variables were assumed to be a

priori independent. The elements on the diagonal
were chosen  to allow the state variables to vary
enough to respond to a trend, but not enough to
absorb random fluctuations. Since alt might
approximate the average of the vector Yt, nt‘l
was chosen  for the upper diagonal, and the factor
0.01 was used in the lower diagonal to prevent
CY~~  from fluctuating ín response to random
disturbances. The results were robust to changes
ín the W and V matrices, which lends credence to
these values.

Data from NPS plots dates back to 1900. The
above algorithm was applied to the data from 1901
through 1983, because  taking first differences
eliminates the first observation. The climate
data were available from 1931 through 1983, so
the filter was modified during the "preclimate"
period (1901-30) by setting w2t and Ct to zero.

Results of Application 1

Climate lagged by 1 year was found to best
predict  the chronology or time trend in the data.
The climate variable used was a linear
combination of al1 the monthly rainfall and
temperature data for a year, as described  in
table 1.
Figure 3 presents the chronologies for the

three data sets. The NPS and Clingman's Dome
chronologies were very similar, particularly over
the past 10 years. Variation in the standardized
series had a tendency to increase ín the more
recent years. This increase was most evident in
the TVA chronology, but there was no suggestion
for the cause of increases.
The time trend predictions based on lagged

climate and the climate effect variable a2t with
95 percent confidente  intervals are plotted in
figures 4, 5, and 6. Lagged climate predicted
the chronologies accurately beginning in the

Table 1 The climate variable used was a linear
combination of monthly rainfall and temperature
averages. The weight below is the value
multiplied by the corresponding monthly average
to create this combined  climate variable. The
principie  components  method was used to create
this linear combination. September temperature
and October rainfall have the largest weights.

Variable Month Weight

Temperature J 0.056
F -0.176
M -0.124
A -0.257
M -0.106
J -0.112
J -0.270
A -0.264
S -0.409
0 0.013
N 0.204
D 0.040

Rainfall J -0.056
F 0.164
M 0.083
A -0.039
M 0.161
J 0.199
J 0.061
A 0.026
S 0.027
0 -0.517
N 0.166
D 0.179

196O's, but did poorly before this. The
corresponding plot of the parameter (the climate
effect) that multiplies climate also showed an
increase over time. This indicated that the
trees were becoming more responsive to climate in
the 1960's than they were previously. The reason
for the increased sensítivity to climate cannot
be determined from this study. One might
speculate that this was caused by thinning in the
stands as a result of insect damage to the fir
component. Whether this is related to pollution
has not been determined.

Application 2

The Kalman filter can be applied to
simultaneous prediction of past climate and the
single common chronology. This traditionally
involves averaging the individual series together
as a first step to form the single chronology.
The climate prediction is then a separate step
that takes place without the complete information
contained in the original series.

A Kalman filter can be formulated to handle
these steps simultaneously. This incorporates
the ful1 informatíon contained in the data while
automatically providing a prediction system for
past climate with associated prediction
intervals. Although the simple solution given
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Figure 3.--Standardized  chronologies from the Clingman's  Dome, National Park
Service, and Tennessee Valley  Authority data sets. First
differences of the log transform were used to standardize each
tree ring series. A Kalman  fílter was used to produce 'the
chronology as described  in equations (6a),  (6b),  and (6~).
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Figure 4.--Time  trend predictions: A, Clingman's  dome chronology (solid
line) and its climate based prediction (dashed line) using the
Kalman  filter described  by equations (6a),  (6b),  and (6~);  B, the
trend in the climate parameter given in equation (6a). The
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below does not achieve the potential of the
method, it was chosen  to emphasize some important
points. Consider the following formulation:

where
Yt is the ntxl vector of standardized ring

widths at time t,
Ct is a qxl vector of observed climate

variables,
jt is a vector of 1's  of length nt,
Ot is a vector of 0's  of length nt,

Yt is the mean of the vector Yt,
olt is the value of the chronology at tima

t,
a2t is the climate parameter at time t, and
v1t3  v2tp  w1t* w2t are random errors.

Equations (7a) through (7d) define a system that
handles the dendroclimatological problems of
forming a single chronology for a site providing
a means of predicting past climate, and testing
the uniformitarian principie.

Some details on implementing the above system
must be noted. The iterative process is started
at time T rather than time 1, since past climate
predictions are needed. Suppose that the climate
variables are available from time T to time t*,
where 1 < t* < T. During this interval of known
climate (INT,)  the parameter ~2 is estimated.
Beyond INT,, equation (7b) ís eliminated and the
Kalman filter is allowed to generate  new values
of o2 back  to time 1 (the earliest time for which
tree data are available) and simultaneously
produce the chronology and climate predictions as
o2tYt+1. Furthermore, the trend can be examined
in the u2 parameter over INT, to see  if the
uniformitarian principie  is valid, although the
Kalman filter will tend to move ~2 along the
established trend making the uniformitaria*
assumption less important.

Results of Application 2

Starting values must be supplied to the system in
(7a) through (7d) for the parameter vector and
the variance  matrices Vt and Wt; Vt was assumed
diagonal with variances estimated from the
vectors  Yt as in example 1. The last diagonal
element in Vt is the variance  of v2t and was
estimated from the variance  in the known climate
data. The matrix Wt was also assumed diagonal
and chosen  similarly to example 1.

A principie  component  of climate variables was
used for Ct. A starting value of zero was used
for the chronology parameter al, and o2 was
started at 10. Unfortunately, climate was

predicted poorly (fig. 7). The values before 1931
were predictions generated by the model. Figure
7 shows the climate parameter a2 trending over
time with a 95 percent confidente  interval. The
parameter was tending toward zero as the
confidente interval expanded, which is not
surprising given the poor predictions.
the model presented

Although

(7d) may not be ideal,
in equations (7a) through
this demonstrates how one

could use the Kalman filter for predicting past
climate.

CONCLUSION

The focus of this paper was to apply the Kalman
filter to the study of tree rings. The Kalman
filter provides  a natural way of handling many of
the problems that dendrochronologists encounter.
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Figure 7.

Y E A R

--Climate  prediction: A, prediction
(dashed line) of past climate obtaíned
from tree ring data using the Kalman
filter described  by equations (7a)
through (7d). The solid line is known
climate, whích is available back to
1931; B, the climate parameter trend
and 95 percent confidente  ínterval.
This plot indicates that the
uniformítarian principie  does not hold
here, since the parameter is tending
toward zero.
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The first application involved prediction of an
average chronology with climate incorporated in
the process. The parameter associated with the
climate was allowed to vary over time. The
climate parameter followed a sigmoid  curve that
implied an increasing sensitivity to climate with
time. One might speculate that insect-caused
thinning of the fir component  accounts for this
phenomenon.

The second application gave some insight as to
how the method can be applied to more typical
dendrochronological needs, i.e., predicting the
past value of climate from tree rings. It was
previously indicated ín application 1 that the
data set employed was insensitive to climate in
the past and thus predictions were poor.
Although the filter was not extremely
sophisticated, it showed how one might proceed
with such a problem. Future mean tree ring
values were used to predict  current climate while
simultaneously developing the mean chronology.
The trend in the climate parameter could also be
inspected as an indication of the validity of the
uniformitarian principie.
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